Skip to main content
Log in

Modification of the Lemaitre Damage Model by a Local Multiaxial Stress State Function

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

A modification of the Lemaitre damage model is proposed based on the introduction of a function sensitive to the Lode parameter. The modified model is imported into the ANSYS software as a dynamically linked custom tag library. The model takes into account isotropic hardening based on the exponential Voice model and kinematic hardening based on the Armstrong–Frederick model. Limit state curves are obtained by numerical finite element analysis for three types of experimental cylindrical specimens: a compression specimen under additional external pressure, a circular-notch specimen under uniaxial tension, and a hollow cylindrical specimen under combined tension, torsion, and internal pressure. The advantages and disadvantages of the proposed model are considered. Recommendations are given for choosing model parameters to predict limit states under multiaxial loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kachanov, L.M., Fundamentals of Fracture Mechanics, Moscow: Nauka, 1974.

  2. Rabotnov, Yu.N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, Amsterdam: North-Holland Publishing Company, 1969.

  3. Lemaitre, J., A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol. Trans. ASME, 1985, vol. 107, no. 1, pp. 83–89.

    Article  Google Scholar 

  4. Gurson, A.L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1. Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol. Trans. ASME, 1977, vol. 99, no. 1, pp. 2–15.

    Article  Google Scholar 

  5. De Souza Neto, E.A., Perić, D., and Owen, D.R.J., Computational Methods for Plasticity: Theory and Applications, Hoboken: Wiley, 2008.

  6. Cao, T.S., Numerical Simulation of 3D Ductile Cracks Formation Using Recent Improved Lode-Dependent Plasticity and Damage Models Combined with Remeshing, Int. J. Solids Struct., 2014, vol. 51, no. 13, pp. 2370–2381.

    Article  Google Scholar 

  7. Naimark, O.B., Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua, in Advances in Multifield Theories for Continua with Substructure, Boston: Birkhäuser, 2004, pp. 75–114.

  8. Vildeman, V.E., Boundary Value Problems of the Mechanics of Inelastic Deformation and Fracture of Composite Materials: Doctoral (Phys.-Math.) Dissertation, Perm: Perm State Technical University, 1998.

  9. Jaric, J. and Kuzmanovic, D., On Damage Tensor in Linear Anisotropic Elasticity, Theor. Appl. Mech., 2017, vol. 44, no. 2, pp. 141–154.

    Article  ADS  Google Scholar 

  10. Görthofer, J., Schneider, M., and Böhlke, T., A Convex Anisotropic Damage Model Based on the Compliance Tensor, Int. J. Damage Mech., 2022, vol. 31, no. 1, pp. 43–86.

    Article  Google Scholar 

  11. Voyiadjis, G.Z. and Kattan, P.I., Decomposition of Healing Tensor: In Continuum Damage and Healing Mechanics, Int. J. Damage Mech., 2018, vol. 27, no. 7, pp. 1020–1057.

    Article  Google Scholar 

  12. Il'inykh, A.V., Numerical Modeling of Structural Fracture Processes for Granular Composites with Isotropic Elements of Structure, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, vol. 2, no. 23, pp. 101–106.

    Article  Google Scholar 

  13. Lian, J., Feng, Y., and Münstermann, S., A Modified Lemaitre Damage Model Phenomenologically Accounting for the Lode Angle Effect on Ductile Fracture, Proc. Mater. Sci., 2014, vol. 3, pp. 1841–1847.

    Article  Google Scholar 

  14. Cocks, A.C.F. and Ashby, M.F., Intergranular Fracture during Power-Law Creep under Multiaxial Stresses, Met. Sci., 1980, vol. 14, nos. 8–9, pp. 395–402.

    Article  Google Scholar 

  15. Cocks, A.C.F. and Ashby, M.F., On Creep Fracture by Void Growth, Prog. Mater. Sci., 1982, vol. 27, nos. 3–4, pp. 189–244.

    Article  Google Scholar 

  16. Xue, L., Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials, Eng. Fract. Mech., 2008, vol. 75, no. 11, pp. 3343–3366.

    Article  Google Scholar 

  17. Xue, L., Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading, Int. J. Solids Struct., 2007, vol. 44, no. 16, pp. 5163–5181.

    Article  Google Scholar 

  18. Nielsen, K.L. and Tvergaard, V., Ductile Shear Failure or Plug Failure of Spot Welds Modelled by Modified Gurson Model, Eng. Fract. Mech., 2010, vol. 77, no. 7, pp. 1031–1047.

    Article  Google Scholar 

  19. Nahshon, K. and Hutchinson, J.W., Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A. Solids, 2008, vol. 27, no. 1, pp. 1–17.

    Article  ADS  Google Scholar 

  20. Freitas, R., Asta, M., and Bulatov, V.V., Quantum Effects on Dislocation Motion from Ring-Polymer Molecular Dynamics, npj Comput. Mater., 2018, vol. 4, no. 1, p. 55.

    Article  ADS  Google Scholar 

  21. Volegov, P.S., Gerasimov, R.M., and Davlyatshin, R.P., Models of Molecular Dynamics: A Review of EAM Potentials. Part 1: Potentials for Single-Component Systems, PNRPU Mech. Bull., 2017, no. 4, pp. 214–237.

    Google Scholar 

  22. Volegov, P.S., Gerasimov, R.M., and Davlyatshin, R.P., Models of Molecular Dynamics: A Review of EAM-Potentials. Part 2. Potentials for Multi-Component Systems, PNRPU Mech. Bull., 2018, no. 2, pp. 114–132.

    Google Scholar 

  23. Belova, O.N. and Stepanova, L.V., Studying the Crack Distribution by the Molecular Dynamics Method in a Copper Plate, Vestn. Samar. Univ. Estestvennonauch. Ser., 2019, vol. 25, no. 3, pp. 39–61.

    Google Scholar 

  24. Panin, V.E., Moiseenko, D.D., Maksimov, P.V., and Panin, S.V., Effects of Plastic Distortion in the Lattice Curvature Zone of a Crack Tip, Phys. Mesomech., 2017, vol. 20, no. 3, pp. 280–290. https://doi.org/10.1134/S1029959917030043

    Article  Google Scholar 

  25. Panin, V.E., Elsukova, T.F., Surikova, N.S., Popkova, Yu.F., and Borisyuk, D.V., The Role of Rotation Modes of Plastic Deformation in Failure of High-Purity Al at Ambient Temperature Creep, Deform. Razr. Mater., 2016, no. 12. pp. 2–9.

    Google Scholar 

  26. Erdogan, F. and Sih, G.C., On the Crack Extension in Plates under Plane Loading and Transverse Shear, ASME J. Basic Eng., 1963, no. 4, pp. 519–525.

    Article  Google Scholar 

  27. Potapova, L.B. and Yartsev, V.P., Mechanics of Materials in the Complex Stress State, Moscow: Mashinostroenie, 2005.

  28. Pisarenko, G.S. and Lebedev, A.A., Deformation and Strength of Materials in the Complex Stress State, Kiev: Naukova Dumka, 1976.

  29. Sih, G.C., Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems, Int. J. Fract., 1974, vol. 10, no. 3, pp. 305–321.

    Article  Google Scholar 

  30. Hussain, M., Pu, S., and Underwood, J., Strain Energy Release Rate for a Crack under Combined Mode I and Mode II, in Proc. Nat. Symp. Fracture Mechanics, Part 2, Washington, 1973, pp. 1–27.

  31. Shlyannikov, V.N., Elastic-Plastic Mixed-Mode Fracture Criteria and Parameters, in Lect. Notes Appl. Comput. Mech., Berlin–Heidelberg: Springer, 2003, vol. 7, pp. 236–243.

  32. Bai, Y. and Wierzbicki, T., A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plast., 2008, vol. 24, no. 6, pp. 1071–1096.

    Article  Google Scholar 

  33. Kumar, A., Singh, A.K., Shrivastava, A., Mishra, S., and Narasimhan, K., Shear Modified Lemaitre Damage Model for Fracture Prediction during Incremental Sheet Forming, Int. J. Solids Struct., 2022, vol. 252, p. 111822.

    Article  Google Scholar 

  34. Alves, J.L. and Cazacu, O., Effect of the Third Invariant of the Stress Deviator on the Response of Porous Solids with Pressure-Insensitive Matrix, in From Microstructure Investigations to Multiscale Modeling, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017, pp. 167–196.

  35. Coppola, T., Cortese, L., and Folgarait, P., The Effect of Stress Invariants on Ductile Fracture Limit in Steels, Eng. Fract. Mech., 2009, vol. 76, no. 9, pp. 1288–1302.

    Article  Google Scholar 

  36. Pater, Z., Tomczak, J., Bulzak, T., Wojcik, L., and Skripalenko, M., Prediction of Ductile Fracture in Skew Rolling Processes, Int. J. Mach. Tools Manuf., 2021, vol. 163, p. 103706.

    Article  Google Scholar 

  37. Da Silva Santos, I., Sarzosa, D.F.B., and Paredes, M., Ductile Fracture Modeling Using the Modified Mohr–Coulomb Model Coupled with a Softening Law for an ASTM A285 Ssteel, Thin-Walled Struct., 2022, vol. 176, p. 109341.

    Article  Google Scholar 

  38. Teng, X., Numerical Prediction of Slant Fracture with Continuum Damage Mechanics, Eng. Fract. Mech., 2008, vol. 75, no. 8, pp. 2020–2041.

    Article  Google Scholar 

  39. Peng, J., Zhou, P., Wang, Y., Dai, Q., Knowles, D., and Mostavi, M., Stress Triaxiality and Lode Angle Parameter Characterization of Flat Metal Specimen with Inclined Notch, Metals (Basel), 2021, vol. 11, no. 1627, pp. 1–14.

    Google Scholar 

  40. Chaboche, J.L., On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects, Int. J. Plast., 1991, vol. 7, no. 7, pp. 661–678.

    Article  Google Scholar 

  41. Frederick, C.O. and Armstrong, P.J., A Mathematical Representation of the Multiaxial Bauschinger Effect, Mater. High Temp., 2007, vol. 24, no. 1, pp. 1–26.

    Article  Google Scholar 

  42. Lemaitre, J. and Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures, Berlin: Springer, 2005.

  43. Danas, K. and Ponte Castañeda, P., Influence of the Lode Parameter and the Stress Triaxiality on the Failure of Elasto-Plastic Porous Materials, Int. J. Solids Struct., 2012, vol. 49, nos. 11–12, pp. 1325–1342.

    Article  Google Scholar 

  44. Ishtyryakov, I.S., Development of Surface Defects in a Complex Stress State at Negative, Normal and Elevated Temperatures: Cand. Sci. (Phys.-Math.) Dissertation, Kazan: FRC Kazan Scientific Center of the Russian Academy of Sciences, 2021.

  45. Bao, Y. and Wierzbicki, T., A Comparative Study on Various Ductile Crack Formation Criteria, J. Eng. Mater. Technol. Trans. ASME, 2004, vol. 126, no. 3, pp. 314–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tumanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumanov, A.V. Modification of the Lemaitre Damage Model by a Local Multiaxial Stress State Function. Phys Mesomech 26, 573–580 (2023). https://doi.org/10.1134/S1029959923050090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923050090

Keywords:

Navigation