Skip to main content
Log in

Influence of Minor Aluminum Addition on the Superplastic Deformation of a Microduplex Cu-Zn Alloy

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

High residual porosity in superplastically deformed brass carries the risk of reducing the mechanical properties. Multicomponent brasses demonstrate lower residual porosity, associated with a lower grain size and more effective accommodation of grain boundary sliding. In this paper, the microstructural evolution of the surface and bulk structure of the binary brass and aluminum-bearing brass during steady-state superplastic deformation is compared. After superplastic deformation, dislocation pile-ups and dislocation walls are revealed in the α grains of both alloys, indicating the activation of the dislocation slip/creep mechanism. It is shown that aluminum reduces the contribution of grain boundary sliding along the phase boundaries from ~75 to ~30% and causes strain localization in the β-phase region with the formation of ultrafine grains with the size below ~300 nm as a result of dynamic recrystallization. Alloying with 0.4% Al reduces the flow stress by 20%, increases the relative elongation by a factor of 1.5, and decreases the fraction of residual porosity by a factor of 3. This leads to a much lower loss of room temperature strength in superplastically deformed alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Liu, F.C. and Ma, Z.Y., Superplasticity Governed by Effective Grain Size and Its Distribution in Fine-Grained Aluminum Alloys, Mater. Sci. Eng. A, 2011, vol. 530, pp. 548–558. https://doi.org/10.1016/j.msea.2011.10.018

    Article  Google Scholar 

  2. Langdon, T.G., Seventy-Five Years of Superplasticity: Historic Developments and New Opportunities, J. Mater. Sci., 2009, vol. 44, no. 22, pp. 5998–6010. https://doi.org/10.1007/s10853-009-3780-5

    Article  ADS  Google Scholar 

  3. Yakovtseva, O.A., Mikhailovskaya, A.V., Kotov, A.D., Mamzurina, O.I., and Portnoy, V.K., Effect of the Strain and Strain Rate on Microstructure Evolution and Superplastic Deformation Mechanisms, Phys. Met. Metallogr., 2019, vol. 120, no. 1, pp. 87–94. https://doi.org/10.1134/S0031918X18110224

    Article  ADS  Google Scholar 

  4. Humphries, C.W. and Ridley, N., Cavitation during the Superplastic Deformation of an α/β Brass, J. Mater. Sci., 1978, vol. 13, no. 11, pp. 2477–2482. https://doi.org/10.1007/BF00808064

    Article  ADS  Google Scholar 

  5. Ridley, N., Patterson, W.J.D., and Livesey, D.W., Superplastic Flow and Cavitation Behaviour in alpha/ beta Copper Alloys during Compressive Deformation, in Energy Technology Review, Pergamon Press Ltd., 1980, pp. 393–398. https://doi.org/10.1016/b978-1-4832-8412-5.50071-0

  6. Pollatsek, A., Lima, S., and Well, A.D., Normalization of Cavitation in Superplastic α/β Brasses with Different Phase Proportions, J. Scripta Metall., 1981, vol. 15, pp. 895–898. https://doi.org/10.1007/BF00305621

    Article  Google Scholar 

  7. Blandin, J.J., Hong, B., Varloteaux, A., Suery, M., and L'Esperance, G., Effect of the Nature of Grain Boundary Regions on Cavitation of a Superplastically Deformed Aluminium Alloy, Acta Mater., 1996, vol. 44, no. 6, pp. 2317–2326. https://doi.org/10.1016/1359-6454(95)00340-1

    Article  ADS  Google Scholar 

  8. Blandin, J.J., Superplasticity of Metallic Alloys: Some Current Findings and Open Questions, Mater. Sci. Forum, 2016, vol. 838–839, pp. 13–22. https://doi.org/10.4028/www.scientific.net/MSF.838-839.13

    Article  Google Scholar 

  9. Sotoudeh, K. and Bate, P.S., Diffusion Creep and Superplasticity in Aluminium Alloys, Acta Mater., 2010, vol. 58, no. 6, pp. 1909–1920. https://doi.org/10.1016/j.actamat.2009.11.034

    Article  ADS  Google Scholar 

  10. Chen, C.L. and Tan, M.J., Effect of Grain Boundary Character Distribution (GBCD) on the Cavitation Behaviour during Superplastic Deformation of Al 7475, Mater. Sci. Eng. A, 2002, vol. 338, no. 1–2, pp. 243–252. https://doi.org/10.1016/S0921-5093(02)00083-7

    Article  Google Scholar 

  11. Mikhaylovskaya, A.V., Mosleh, A.O., Mestre-Rinn, P., Kotov, A.D., Sitkina, M.N., Bazlov, A.I., and Louzguine-Luzgin, D.V., High-Strength Titanium-Based Alloy for Low-Temperature Superplastic Forming, Metall. Mater. Trans. A. Phys. Metall. Mater. Sci., 2020, vol. 52, no. 1, pp. 293–302.

    Article  ADS  Google Scholar 

  12. Roy, S. and Suwas, S., Enhanced Superplasticity for (α + β)-Hot Rolled Ti-6Al-4V-0.1B Alloy by Means of Dynamic Globularization, Mater. Des., 2014, vol. 58, pp. 52–64. https://doi.org/10.1016/j.matdes.2014.01.033

    Article  Google Scholar 

  13. Alabort, E., Kontis, P., Barba, D., Dragnevski, K., and Reed, R.C., On the Mechanisms of Superplasticity in Ti-6Al-4V, Acta Mater., 2016, vol. 105, pp. 449–463. https://doi.org/10.1016/j.actamat.2015.12.003

    Article  ADS  Google Scholar 

  14. Sagat, S. and Taplin, D.M.R., Fracture of a Superplastic Ternary Brass, Acta Metall., 1976, vol. 24, no. 4, pp. 307–315. https://doi.org/10.1016/0001-6160(76)90005-5

    Article  Google Scholar 

  15. Campbell, J., Cavitation during Superplastic Forming, Materials (Basel), 2011, vol. 4, no. 7, pp. 1271–1286. https://doi.org/10.3390/ma4071271

    Article  ADS  Google Scholar 

  16. Langdon, T.G., Grain Boundary Sliding Revisited: Developments in Sliding over Four Decades, J. Mater. Sci., 2006, vol. 41, no. 3, pp. 597–609. https://doi.org/10.1007/s10853-006-6476-0

    Article  ADS  Google Scholar 

  17. Li, H., Liu, X., Sun, Q., Ye, L., and Zhang, X., Superplastic Deformation Mechanisms in Fine-Grained 2050 Al-Cu-Li Alloys, Materials (Basel), 2020, vol. 13, no. 12, p. 2705. https://doi.org/10.3390/ma13122705

    Article  ADS  Google Scholar 

  18. Korznikova, G.F., Khalikova, G.R., Mironov, S.Yu., Aletdinov, A.F., Korznikova, E.A., Konkova, T.N., and Myshlyaev, M.M., Superplastic Behavior of Fine-Grained Al-Mg-Li Alloy, Phys. Mesomech., 2022, vol. 25, no. 4, pp. 318–325. https://doi.org/10.1134/S1029959922040051

    Article  Google Scholar 

  19. Chokshi, A.H., Grain Boundary Processes in Strengthening, Weakening, and Superplasticity, Adv. Eng. Mater., 2020, vol. 22, no. 1, pp. 1–9. https://doi.org/10.1002/adem.201900748

    Article  Google Scholar 

  20. Masuda, H. and Sato, E., Diffusional and Dislocation Accommodation Mechanisms in Superplastic Materials, Acta Mater., 2020, vol. 197, pp. 235–252. https://doi.org/10.1016/j.actamat.2020.07.042

    Article  ADS  Google Scholar 

  21. Blackwell, P.L. and Bate, P.S., Superplastic Deformation without Relative Grain Translation?, Mater. Sci. Forum, 1999, vol. 304–306, pp. 189–194. https://doi.org/10.4028/www.scientific.net/msf.304-306.189

    Article  Google Scholar 

  22. Langdon, T.G., A Lifetime of Research in Creep, Superplasticity, and Ultrafine-Grained Materials, Adv. Eng. Mater., 2020, vol. 22, no. 1, pp. 1–8. https://doi.org/10.1002/adem.201900442

    Article  Google Scholar 

  23. Rust, M.A. and Todd, R.I., Surface Studies of Region II Superplasticity of AA5083 in Shear: Confirmation of Diffusion Creep, Grain Neighbour Switching and Absence of Dislocation Activity, Acta Mater., 2011, vol. 59, no. 13, pp. 5159–5170. https://doi.org/10.1016/j.actamat.2011.04.051

    Article  ADS  Google Scholar 

  24. Chandra, T., Jonas, J.J., and Taplin, D.M.R., Note on the Relationship between Cavitation and Ductility in Microduplex Brasses, J. Aust. Inst. Met. Incl. Met. Forum, 1975, vol. 20, no. 4, pp. 220–225.

    Google Scholar 

  25. Hong, H.L., Wang, Q., Dong, C., and Liaw, P.K., Understanding the Cu-Zn Brass Alloys Using a Short-Range-Order Cluster Model: Significance of Specific Compositions of Industrial Alloys, Sci. Rep., 2015, vol. 4, no. 1, p. 7065. https://doi.org/10.1038/srep07065

    Article  Google Scholar 

  26. Moshkovich, A., Perfilyev, V., Lapsker, I., and Rapoport, L., Friction, Wear and Plastic Deformation of Cu and α/β Brass under Lubrication Conditions, Wear, 2014, vol. 320, no. 1, pp. 34–40. https://doi.org/10.1016/j.wear.2014.08.016

    Article  Google Scholar 

  27. Smirnov, S.V., Pugacheva, N.B., Myasnikova, M.V., Matafonov, P.P., and Polkovnikova, T.V., Micromechanics of Fracture and Deformation of Brass, Fiz. Mesomeh., 2004, vol. 7, spec. iss., part 1, pp. 165–168. https://doi.org/10.24411/1683-805X-2004-00230

    Article  Google Scholar 

  28. Chen, C.L. and Tan, M.J., Cavity Growth and Filament Formation of Superplastically Deformed Al 7475 Alloy, Mater. Sci. Eng. A, 2001, vol. 298, no. 1–2, pp. 235–244. https://doi.org/10.1016/s0928-4931(00)00193-4

    Article  Google Scholar 

  29. Mabao, L. and Shichun, W., A Model for Cavity Growth in a Superplastic Material during Uniaxial Tension, J. Mater. Process. Tech., 1994, vol. 41, no. 1, pp. 115–124. https://doi.org/10.1016/0924-0136(94)90180-5

    Article  Google Scholar 

  30. Zelin, M.G., Processes of Microstructural Evolution during Superplastic Deformation, Mater. Charact., 1996, vol. 37, no. 5, pp. 311–329. https://doi.org/10.1016/S1044-5803(96)00127-1

    Article  Google Scholar 

  31. Ma, Z.Y. and Mishra, R.S., Cavitation in Superplastic 7075 Al Alloys Prepared Via Friction Stir Processing, Acta Mater., 2003, vol. 51, no. 12, pp. 3551–3569. https://doi.org/10.1016/S1359-6454(03)00173-3

    Article  ADS  Google Scholar 

  32. Ragab, A.R., Modeling of the Effect of Cavitation on Tensile Failure of Superplastic Alloys, Mater. Sci. Eng. A, 2007, vol. 454–455, pp. 614–622. https://doi.org/10.1016/j.msea.2006.11.093

    Article  Google Scholar 

  33. Yakovtseva, O.A., Mikhaylovskaya, A.V., Pozdniakov, A.V., Kotov, A.D., and Portnoy, V.K., Superplastic Deformation Behaviour of Aluminium Containing Brasses, Mater. Sci. Eng. A, 2016, vol. 674, pp. 135–143. https://doi.org/10.1016/j.msea.2016.07.053

    Article  Google Scholar 

  34. Farabi, E., Zarei-Hanzaki, A., Pishbin, M.H., and Moallemi, M., Rationalization of Duplex Brass Hot Deformation Behavior: The Role of Microstructural Components, Mater. Sci. Eng. A, 2015, vol. 641, pp. 360–368. https://doi.org/10.1016/j.msea.2015.06.042

    Article  Google Scholar 

  35. Yakovtseva, O.A., Mikhailovskaya, A.V., Kotov, A.D., and Portnoi, V.K., Effect of Alloying on Superplasticity of Two-Phase Brasses, Phys. Met. Metallogr., 2016, vol. 117, no. 7, pp. 742–748. https://doi.org/10.1134/S0031918X16070188

    Article  ADS  Google Scholar 

  36. Chuvil'deev, V.N., Gryaznov, M.Y., Shotin, S.V., Kopylov, V.I., Nokhrin, A.V., Likhnitskii, C.V., Murashov, A.A., Bobrov, A.A., Tabachkova, N.Y., and Pirozhnikova, O.E., Investigation of Superplasticity and Dynamic Grain Growth in Ultrafine-Grained Al–0.5%Mg–Sc Alloys, J. Alloys Compd, 2021, vol. 877, p. 160099. https://doi.org/10.1016/j.jallcom.2021.160099

    Article  Google Scholar 

  37. Raj, R. and Ashby, M.F., Grain Boundary Sliding, and the Effects of Particles on Its Rate, Metall. Trans., 1972, vol. 3, no. 7, pp. 1937–1942. https://doi.org/10.1007/BF02642582

    Article  Google Scholar 

  38. Yakovtseva, O.A., Sitkina, M.N., Kotov, A.D., Rofman, O.V., and Mikhailovskaya, A.V., Experimental Study of the Superplastic Deformation Mechanisms of High-Strength Aluminum-Based Alloy, Mater. Sci. Eng. A, 2020, vol. 788, p. 139639. https://doi.org/10.1016/j.msea.2020.139639

    Article  Google Scholar 

  39. Sherby, O.D. and Taleff, E.M., Influence of Grain Size, Solute Atoms and Second-Phase Particles on Creep Behavior of Polycrystalline Solids, Mater. Sci. Eng. A, 2002, vol. 322, no. 1–2, pp. 89–99. https://doi.org/10.1016/S0921-5093(01)01121-2

    Article  Google Scholar 

  40. Yakovtseva, O.A., Mikhaylovskaya, A.V., Irzhak, A.V., Kotov, A.D., and Medvedeva, S.V., Comparison of Contributions of the Mechanisms of the Superplastic Deformation of Binary and Multicomponent Brasses, Phys. Met. Metallogr., 2020, vol. 121, no. 6, pp. 582–589. https://doi.org/10.1134/S0031918X20060186

    Article  ADS  Google Scholar 

  41. Higashi, K., Ohnishi, T., and Nakatani, Y., Superplastic Behavior of Commercial Aluminum Bronze, Scripta Metall., 1985, vol. 19, no. 7, pp. 821–823.

    Article  Google Scholar 

  42. Mikhaylovskaya, A.V., Yakovtseva, O.A., Tabachkova, N.Yu., and Langdon, T.G., Formation of Ultrafine Grains and Twins in the β-Phase during Superplastic Deformation of Two-Phase Brasses, Scripta Mater., 2022, vol. 218, p. 114804. https://doi.org/10.1016/j.scriptamat.2022.114804

    Article  Google Scholar 

  43. Mikhaylovskaya, A.V., Yakovtseva, O.A., Sitkina, M.N., Krymskiy, S.V., and Portnoy, V.K., Comparison between Superplastic Deformation Mechanisms at Primary and Steady Stages of the Fine Grain AA7475 Aluminium Alloy, Mater. Sci. Eng. A, 2018, vol. 718, pp. 277–286. https://doi.org/10.1016/j.msea.2018.01.102

    Article  Google Scholar 

  44. Hsiao, I.C. and Huang, J.C., Deformation Mechanisms during Low- and High-Temperature Superplasticity in 5083 Al-Mg Alloy, Metall. Mater. Trans. A. Phys. Metall. Mater. Sci., 2002, vol. 33, pp. 1373–1384.

    Article  ADS  Google Scholar 

  45. Liu, X., Ye, L., Tang, J., Shan, Z., Ke, B., Dong, Y., and Chen, J., Superplastic Deformation Mechanisms of an Al–Mg–Li Alloy with Banded Microstructures, Mater. Sci. Eng. A, 2021, vol. 805, p. 140545.

    Article  Google Scholar 

  46. Mikhaylovskaya, A.V., Yakovtseva, O.A., and Irzhak, A.V., The Role of Grain Boundary Sliding and Intragranular Deformation Mechanisms for a Steady Stage of Superplastic Flow for Al–Mg-Based Alloys, Mater. Sci. Eng. A, 2022, vol. 833, p. 142524.

    Article  Google Scholar 

  47. Portnoy, V.K. and Novikov, I.I., Evaluation of Grain Boundary Sliding Contribution to the Total Strain during Superplastic Deformation, Scripta Mater., 1998, vol. 40, no. 1, pp. 39–43. https://doi.org/10.1016/S1359-6462(98)00394-7

    Article  Google Scholar 

  48. Mikhaylovskaya, A.V., Yakovtseva, O.A., Mochugovskiy, A.G., Cifre, J., and Golovin, I.S., Influence of Minor Zn Additions on Grain Boundary Anelasticity, Grain Boundary Sliding, and Superplasticity of Al-Mg-Based Alloys, J. Alloys Compd, 2022, vol. 926, p. 166785.

    Article  Google Scholar 

Download references

Funding

The work was carried out under the grant of the President of the Russian Federation for leading scientific schools NSh-1752.2022.4. The TEM study of the structure was performed using the equipment of the Materials Science and Metallurgy CUC funded by the Ministry of Education and Science of the Russian Federation under the Government statement of work No. 075-15-2021-696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mikhaylovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovtseva, O.A., Kaboyi, P.K., Irzhak, A.V. et al. Influence of Minor Aluminum Addition on the Superplastic Deformation of a Microduplex Cu-Zn Alloy. Phys Mesomech 26, 533–541 (2023). https://doi.org/10.1134/S1029959923050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923050065

Keywords:

Navigation