Skip to main content
Log in

Vibration Analysis of Single-Walled Carbon Nanotubes Embedded in a Polymer Matrix under Magnetic Field Considering the Surface Effect Based on Nonlocal Strain Gradient Elasticity Theory

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWCNTs) in an elastic medium under a longitudinal magnetic field have piqued the interest of researchers as elements utilized in nanoelectro-magneto-mechanical systems (NEMMS). This work presents the vibration analysis of embedded SWCNTs using the nonlocal second-order strain gradient elasticity theory. Considering the surface effect, the characteristic equation of motion for a SWCNT embedded in a polymer matrix under a longitudinal magnetic field is formulated and derived. The dependence of the distinct natural frequency of SWCNTs on the nanotube chiral angle and diameter is clarified. The effects of various parameters on the vibration characteristics of SWCNTs are examined and discussed, including the longitudinal magnetic field, surface effect, chiral index, chiral angle, chirality of SWCNTs, vibrational mode number, aspect ratio (length-to-diameter ratio), nonlocal and material length scale parameters. The numerical findings of this work might be helpful in the study and implementation of embedded SWCNTs as NEMMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature, 1991, vol. 354, pp. 56–58. https://doi.org/10.1038/354056a0

    Article  ADS  Google Scholar 

  2. Robertson, J., Realistic Applications of CNTs, Materials Today, 2004, vol. 7, pp. 46–52. https://doi.org/10.1016/S1369-7021(04)00448-1

    Article  Google Scholar 

  3. Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E., and Abdraboh, A.M., Modal Participation of Fixed–Fixed Single-Walled Carbon Nanotube with Vacancies, Int. J. Adv. Struct. Eng., 2019, vol. 11, pp. 151–163. https://doi.org/10.1007/s40091-019-0222-8

    Article  Google Scholar 

  4. Lin-Hui, Y.E., Liu, B-G., and Wang, D-S., Ab Initio Molecular Dynamics Study on Small Carbon Nanotubes, Chin. Phys. Lett., 2001, vol. 18, no. 11, pp. 1496–1499. https://doi.org/10.1088/0256-307X/18/11/323

    Article  ADS  Google Scholar 

  5. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., and Ordejo, P., Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes, Phys. Rev. B, 1999, vol. 59, no. 19, pp. 12678–12688. https://doi.org/10.1103/PhysRevB.59.12678

    Article  ADS  Google Scholar 

  6. Wang, Q., Wave Propagation in Carbon Nanotubes Via Nonlocal Continuum Mechanics, J. Appl. Phys., 2005, vol. 98, no. 12, p. 124301. https://doi.org/10.1063/1.2141648

    Article  ADS  Google Scholar 

  7. Natsuki, T., Lei, X.W., Ni, Q.Q., and Endo, M., Free Vibration Characteristics of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium, Phys. Lett. A, 2010, vol. 374, no. 26, pp. 2670–2674. https://doi.org/10.1016/j.physleta.2010.04.040

    Article  ADS  Google Scholar 

  8. Eringen, A.C., Nonlocal Polar Elastic Continua, Int. J. Eng. Sci., 1972, vol. 10, no. 1, pp. 1–16. https://doi.org/10.1016/0020-7225(72)90070-5

    Article  Google Scholar 

  9. Guoxin, C., Xi, C., and Kysar, W., Thermal Vibration and Apparent Thermal Contraction of Single-Walled Carbon Nanotubes, J. Mech. Phys. Solids, 2006, vol. 54, no. 6, pp. 206–1236. https://doi.org/10.1016/j.jmps.2005.12.003

    Article  Google Scholar 

  10. Wong, E.W., Sheehan, P.E., and Lieber, C.M., Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 1997, vol. 277, no. 5334, pp. 1971–1975. https://doi.org/10.1126/science.277.5334.1971

    Article  Google Scholar 

  11. Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., and Washburn, S., Bending and Buckling of Carbon Nanotubes under Large Strain, Nature, 1997, vol. 389, pp. 582–584. https://doi.org/10.1038/39282

    Article  ADS  Google Scholar 

  12. Heireche, H., Tounsi, A., Benzair, A., and Mechab, I., Sound Wave Propagation in Single-Walled Carbon Nanotubes with Initial Axial Stress, J. Appl. Phys., 2008, vol. 104, no. 1, p. 014301. https://doi.org/10.1063/1.2949274

  13. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A., and Zidour, M., Nonlocal Effects on Thermal Buckling Properties of Double-Walled Carbon Nanotubes, Adv. Nano Res., 2013, vol. 1, no. 1, pp. 1–11. https://doi.org/10.12989/anr.2013.1.1.001

    Article  Google Scholar 

  14. Liani, M., Moulay, N., Bourada, F., Addou, F.Y., Bourada, M., Tounsi, A., and Hussain, M., A Nonlocal Integral Timoshenko Beam Model for Free Vibration Analysis of SWCNTs under Thermal Environment, Adv. Mater. Res., 2022, vol. 11, no. 1, pp. 1–22. https://doi.org/10.12989/amr.2022.11.1.001

    Article  Google Scholar 

  15. Moulay, N., Liani, M., Al-Douri, Y., Bensaid, D., and Berrahal, M., Effect of Chiral Angle and Chiral Index on the Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Euler–Bernoulli Beam Mode, Comput. Condens. Matter, 2022, vol. 30, article e00655, pp. 1–10. https://doi.org/10.1016/j.cocom.2022.e00655

    Article  Google Scholar 

  16. Reddy, J.N. and Pang, S.D., Nonlocal Continuum Theories of Beams for the Analysis of Carbon Nanotubes, J. Appl. Phys., 2008, vol. 103, p. 023511. https://doi.org/10.1063/1.2833431

  17. Zhang, D-P., Lei, Y-J., Wang, C-Y., and Shen, Z-B., Vibration Analysis of Viscoelastic Single-Walled Carbon Nanotubes Resting on a Viscoelastic Foundation, J. Mech. Sci. Technol., 2016, vol. 31, pp. 87–98. https://doi.org/10.1007/s12206-016-1007-7

    Article  Google Scholar 

  18. Ponnusamy, P. and Amuthalakshm, A., Influence of Thermal and Magnetic Field on Vibration of Double Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory, Progr. Mater. Sci., 2015, vol. 10, pp. 243–253. https://doi.org/10.1016/j.mspro.2015.06.047

    Article  Google Scholar 

  19. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T., and Dihaj, A., Analysis of Boundary Conditions Effects on Vibration of Nanobeam in a Polymeric Matrix, Struct. Eng. Mech., 2018, vol. 67, no. 5, pp. 517–525. https://doi.org/10.12989/SEM.2018.67.5.517

    Article  Google Scholar 

  20. Chakraverty, S. and Laxmi, B., Buckling Analysis of Nanobeams with Exponentially Varying Stiffness by Differential Quadrature Method, Chin. Physics B, 2017, vol. 26, no. 7, p. 074602. https://doi.org/10.1088/1674-1056/26/7/074602

    Article  Google Scholar 

  21. Jena, S.K., Chakraverty, S., and Malikan, M., Vibration and Buckling Characteristics of Nonlocal Beam Placed in a Magnetic Field Embedded in Winkler–Pasternak Elastic Foundation Using a New Refined Beam Theory: An Analytical Approach, Eur. Phys. J. Plus, 2020, vol. 135, no. 2, p. 164. https://doi.org/10.1140/epjp/s13360-020-00176-3

    Article  Google Scholar 

  22. Timesli, A., A Cylindrical Shell Model for Nonlocal Buckling Behavior of CNTS Embedded in an Elastic Foundation under the Simultaneous Effects of Magnetic Field, Temperature Change, and Number of Walls, Adv. Nano Res., 2021, vol. 11, no. 6, pp. 581–593. https://doi.org/10.12989/anr.2021.11.6.581

    Article  Google Scholar 

  23. Sobamowo, M.G., Akanmu, J.O., Adeleye, O.A., Akingbade, S.A., and Yinusa, A.A., Coupled Effects of Magnetic Field, Number of Walls, Geometric Imperfection, Temperature Change, and Boundary Conditions on Nonlocal Nonlinear Vibration of Carbon Nanotubes Resting on Elastic Foundations, Forces Mech., 2021, vol. 3, no. 2021, p. 100010. https://doi.org/10.1016/j.finmec.2021.100010

    Article  Google Scholar 

  24. Arda, M. and Aydogdu, M., Analysis of Free Torsional Vibration in Carbon Nanotubes Embedded in a Viscoelastic Medium, Adv. Sci. Technol. Res. J., 2015, vol. 9, no. 26, pp. 28–33. https://doi.org/10.12913/22998624/2361

    Article  Google Scholar 

  25. Arash, B. and Ansari, R., Evaluation of Nonlocal Parameter in the Vibrations of Single-Walled Carbon Nanotubes with Initial Strain, Physica E, 2010, vol. 42, no. 8, pp. 2058–2064. https://doi.org/10.1016/j.physe.2010.03.028

    Article  ADS  Google Scholar 

  26. Mindlin, R.D., Micro-Structure in Linear Elasticity, Archive Ration. Mech. Analysis, 1964, vol. 16, no. 1, pp. 51–78. https://doi.org/10.1007/BF00248490

    Article  ADS  Google Scholar 

  27. Mindlin, R.D., Second Gradient of Strain and Surface-Tension in Linear Elasticity, Int. J. Solids Struct., 1965, vol. 1, no. 4, pp. 417–438. https://doi.org/10.1016/0020-7683(65)90006-5

    Article  Google Scholar 

  28. Li, L., Hu, Y., and Li, X., Longitudinal Vibration of Size-Dependent Rods Via Nonlocal Strain Gradient Theory, Int. J. Mech. Sci., 2016, vol. 115–116, pp. 135–144. https://doi.org/10.1016/j.ijmecsci.2016.06.011

    Article  Google Scholar 

  29. Eltaher, M.A., Hamed, M.A., Sadoun, A.M., and Mansour, A., Mechanical Analysis of Higher Order Gradient Nanobeams, Appl. Math. Comput., 2014, vol. 229, pp. 260–272. https://doi.org/10.1016/j.amc.2013.12.076

    Article  MathSciNet  Google Scholar 

  30. Lim, C.W., Zhang, G., and Reddy, J.N., A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation, J. Mech. Phys. Solids, 2015, vol. 78, pp. 298–313. https://doi.org/10.1016/j.jmps2015.02.001

    Article  ADS  MathSciNet  Google Scholar 

  31. Li, Ch., Guo, H., and Tian, X., Nonlocal Second-Order Strain Gradient Elasticity Model and Its Application in Wave Propagation in Carbon Nanotubes, Microsystem Technol., 2019, vol. 25, pp. 2215–2227. https://doi.org/10.1007/s00542-018-4085-x

    Article  Google Scholar 

  32. Zare, J., Shateri, A., Beni, Y.T., and Ahmadi, A., Vibration Analysis of Shell-Like Curved Carbon Nanotubes Using Nonlocal Strain Gradient Theory, Math. Meth. Appl. Sci., 2020, pp. 1–25. https://doi.org/10.1002/mma.6599

  33. Lu, L., Guo, X., and Zhao, J., Size-Dependent Vibration Analysis of Nanobeams Based on the Nonlocal Strain Gradient Theory, Int. J. Eng. Sci., 2017, vol. 116, pp. 12–24. https://doi.org/10.1016/j.ijengsci.2017.03.006

    Article  Google Scholar 

  34. Li, L. and Hu, Y., Buckling Analysis of Size-Dependent Nonlinear Beams Based on a Nonlocal Strain Gradient Theory, Int. J. Eng. Sci., 2015, vol. 97, pp. 84–94. https://doi.org/10.1016/j.ijengsci.2015.08.013

    Article  Google Scholar 

  35. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., and Darabi, M.A., Coupled Longitudinal-Transverse-Rotational Free Vibration of Post-Buckled Functionally Graded First-Order Shear Deformable Micro- and Nanobeams Based on the Mindlin’s Strain Gradient Theory, Appl. Math. Model., 2016, vol. 40, no. 23–24, pp. 9872–9891. https://doi.org/10.1016/j.apm.2016.06.0422016

    Article  MathSciNet  Google Scholar 

  36. Mehralian, F., Beni, Y.T., and Zeverdejani, M.K., Nonlocal Strain Gradient Theory Calibration Using Molecular Dynamics Simulation Based on Small Scale Vibration of Nanotubes, Physica B. Condens. Matter, 2017, vol. 514, pp. 61–69. https://doi.org/10.1016/j.physb.2017.03.030

    Article  ADS  Google Scholar 

  37. Oveissi, S., Eftekhari, S.A., and Toghraie, D., Longitudinal Vibration and Instabilities of Carbonnanotubes Conveying Fluid Considering Size Effects of Nanoflow and Nanostructure, Physica E. Low-Dimens. Syst. Nanostruct., 2016, vol. 83, pp. 164–173. https://doi.org/10.1016/j.physe.2016.05.010

    Article  ADS  Google Scholar 

  38. Wang, L., Vibration Analysis of Nanotubes Conveying Fluid Based on Gradient Elasticity Theory, J. Vibr. Control, 2012, vol. 18, no. 2, pp. 313–320. https://doi.org/10.1177/2F1077546311403957

    Article  Google Scholar 

  39. Dang, V.H., Sedighi, H.M., Civalek, O., and Abouelregal, A.E., Nonlinear Vibration and Stability of FG Nanotubes Conveying Fluid Via Nonlocal Strain Gradient Theory, Struct. Eng. Mech., 2021, vol. 78, no. 1, pp. 103–116. https://doi.org/10.12989/sem.2021.78.1.103

    Article  Google Scholar 

  40. Farajpour, A., Farokhi, H., Ghayesh, M.H., and Hussain, S., Nonlinear Mechanics of Nanotubes Conveying Fluid, Int. J. Eng. Sci., 2018, vol. 133, pp. 132–143. https://doi.org/10.1016/j.ijengsci.2018.08.009

    Article  Google Scholar 

  41. Ansari, R., Gholami, R., and Rouhi, H., Vibration Analysis of Single-Walled Carbon Nanotubes Using Different Gradient Elasticity Theories, Composites B, 2012, vol. 43, no. 8, pp. 2985–2989. https://doi.org/10.1016/j.compositesb.2012.05.049

    Article  Google Scholar 

  42. Gheshlaghi, B. and Hasheminejad, S.M., Size Dependent Surface Dissipation in Thick Nanowires, Appl. Phys. Lett., 2012, vol. 100, p. 263112. https://doi.org/10.1063/1.4732090

  43. Farshi, B., Assadi, A., and Alinia-Ziazi, A., Frequency Analysis of Nanotubes with Consideration of Surface Effects, Appl. Phys. Lett., 2010, vol. 96, p. 093105. https://doi.org/10.1063/1.3332579

    Article  Google Scholar 

  44. Assadi, A. and Farshi, B., Size Dependent Stability Analysis of Circular Ultrathin Films in Elastic Medium with Consideration of Surface Energies, Physica E. Low-Dimens. Syst. Nanostruct., 2011, vol. 43, no. 5, pp. 1111–1117. https://doi.org/10.1016/j.physe.2011.01.011

    Article  ADS  Google Scholar 

  45. Lu, L., Zhu, L., Guo, X., Zhao, J., and Liu, G., A Nonlocal Strain Gradient Shell Model Incorporating Surface Effects for Vibration Analysis of Functionally Graded Cylindrical Nanoshells, Appl. Math. Mech. (Engl. Ed.), 2019, vol. 40, no. 12, pp. 1695–1722. https://doi.org/10.1007/s10483-019-2549-7

  46. Li, L., Hu, Y.J., and Ling, L., Wave Propagation in Viscoelastic Single-Walled Carbon Nanotubes with Surface Effect under Magnetic Field Based on Nonlocal Strain Gradient Theory, Physica E. Low-Dimens. Syst. Nanostruct., 2016, vol. 75, pp. 118–124. https://doi.org/10.1016/j.physe.2015.09.028

    Article  ADS  Google Scholar 

  47. Chen, X., Fang, C.Q., and Wang, X., The Influence of Surface Effect on Vibration Behaviors of Carbon Nanotubes under Initial Stress, Physica E, 2017, vol. 85, pp. 47–55. https://doi.org/10.1016/j.physe.2016.08.011

    Article  ADS  Google Scholar 

  48. Jin, Q., Ren, Y., Jiang, H., and Li, L., A Higher-Order Size-Dependent Beam Model for Nonlinear Mechanics of Fluid-Conveying FG Nanotubes Incorporating Surface Energy, Compos. Struct., 2021, vol. 269, p. 114022. https://doi.org/10.1016/j.compstruct.2021.114022

  49. Farajpour, A., Dehghany, M., and AShahid, R., Surface and Nonlocal Effects on the Axisymmetric Buckling of Circular Graphene Sheets in Thermal Environment, Composites B, 2013, vol. 50, pp. 333–343. https://doi.org/10.1016/j.compositesb.2013.02.026

    Article  Google Scholar 

  50. Wang, G.F. and Feng, X.Q., Timoshenko Beam Model for Buckling and Vibration of Nanowires with Surface Effects, J. Phys. D. Appl. Phys., 2009, vol. 42, no. 15, p. 155411. https://doi.org/10.1088/0022-3727/42/15/155411

    Article  ADS  Google Scholar 

  51. Wang, G.F. and Feng, X.Q., Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Micro-Beams, J. Appl. Phys., 2007, vol. 90, p. 231904. https://doi.org/10.1063/1.2746950

    Article  Google Scholar 

  52. Lee, H.L. and Chang, W.J., Surface Effects on Axial Buckling of Non-Uniform Nanowires Using Nonlocal Elasticity Theory, Micro Nano Lett. (IET), 2011, vol. 6, no. 1, pp. 19–21. https://doi.org/10.1049/mnl.2010.0191

    Article  Google Scholar 

  53. Atashafrooz, M., Bahaadini R., and Sheibani, H.R., Nonlocal, Strain Gradient and Surface Effects Onvibration and Instability of Nanotubes Conveying Nanoflow, Mech. Adv. Mater. Struct., 2020, vol. 27, no. 7, pp. 586–598. https://doi.org/10.1080/15376494.2018.1487611

  54. Lee, H.-L. and Chang, W.-J., Surface Effects on Frequency Analysis of Nanotubes Using Nonlocal Timoshenko Beam Theory, J. Appl. Phys., 2010, vol. 108, no. 9, p. 093503. https://doi.org/10.1063/1.3503853

    Article  Google Scholar 

  55. Lei, X.W., Natsuki, T., Shi, J.X., and Ni, Q.Q., Surface Effects on the Vibrational Frequency of Double-Walled Carbon Nanotubes Using the Nonlocal Timoshenko Beam Model, Composites B. Eng., 2012, vol. 43, no. 1, pp. 64–69. https://doi.org/10.1016/j.compositesb.2011.04.032

    Article  Google Scholar 

  56. Rouhi, H., Ansari, R., and Darvizeh, M., Size-Dependent Free Vibration Analysis of Nanoshells Based on the Surface Stress Elasticity, Appl. Math. Model., 2016, vol. 40, no. 4, pp. 3128–3140. https://doi.org/10.1016/j.apm.2015.09.094

    Article  MathSciNet  Google Scholar 

  57. Vajtai, R., Springer Handbook of Nanomaterials, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-642-20595-8

  58. Dresselhaus, M.S., Lin, Y.M., Rabin, O., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R., Samsonidze, G., and Dresselhaus, G., Nanowires and Nanotubes, Mater. Sci. Eng. C, 2003, vol. 23, no. 1–2, pp. 129–140. https://doi.org/10.1016/S0928-4931(02)00240-0

    Article  Google Scholar 

  59. Wildoer, J., Venema, L., Rinzler, A., Smalley, R., and Dekker, C., Electronic Structure of Atomically Resolved Carbon Nanotubes, Nature, 1998, vol. 391, pp. 59–62. https://doi.org/10.1038/34139

    Article  ADS  Google Scholar 

  60. Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M., Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes, Nature, 1996, vol. 381, pp. 678–680. https://doi.org/10.1038/381678a0

    Article  ADS  Google Scholar 

  61. Bao, W.X., Zhu, C.C., and Cui, W.Z., Simulation of Young’s Modulus of Single-Walled Carbon Nanotubes by Molecular Dynamics, Physica B. Condens. Matter, 2004, vol. 352, no. 1–4, pp. 156–163. https://doi.org/10.1016/j.physb.2004.07.005

    Article  Google Scholar 

  62. Papanikos, P., Nikolopoulos, D.D., and Tserpes, K.I., Equivalent Beams for Carbon Nanotubes, Comput. Mater. Sci., 2008, vol. 43, no. 2, pp. 345–352. https://doi.org/10.1016/j.commatsci.2007.12.010

    Article  Google Scholar 

  63. Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Brett, C.M.A., and Fernandes, J.V., Mechanical Characterization of Single-Walled Carbon Nanotubes: Numerical Simulation Study, Composites B, 2015, vol. 75, pp. 73–85. https://doi.org/10.1016/j.compositesb.2015.01.014

    Article  Google Scholar 

  64. Pereira, A.F.G., Fernandes, J.V., Antunes, J.M., and Sakharova, N.A., Shear Modulus and Poisson’s Ratio of Single-Walled Carbon Nanotubes: Numerical Evaluation, Phys. Status Solidi, 2016, vol. 253, no. 2, pp. 366–376. https://doi.org/10.1002/pssb.201552320

    Article  Google Scholar 

  65. Kraus, J.D., Electromagnetics, USA: McGrawHill, Inc., 1984.

  66. Soltani, P. and Farshidianfar, A., Periodic Solution for Nonlinear Vibration of a Fluid-Conveying Carbon Nanotube, Based on the Nonlocal Continuum Theory by Energy Balance Method, Appl. Math. Model., 2012, vol. 36, no. 8, pp. 3712–3724. https://doi.org/10.1016/j.apm.2011.11.002

  67. Wang, G.-F. and Feng, X.-Q., Surface Effects on Buckling of Nanowires under Uniaxial Compression, Appl. Phys. Lett., 2009, vol. 94, no. 14, p. 141913. https://doi.org/10.1063/1.3117505

  68. Wildoer, J., Venema, L., Rinzler, A., Smalley, R., and Dekker, C., Electronic Structure of Atomically Resolved Carbon Nanotubes, Nature, 1998, vol. 391, pp. 59–62. https://doi.org/10.1038/34139

    Article  ADS  Google Scholar 

  69. Doyle, J.F., Wave Propagation in Structures, New York: Springer-Verlag Inc., 1997. https://doi.org/10.1007/978-3-030-59679-8

  70. Murmu, T., McCarthy, M.A., and Adhikari, S., Vibration Response of Double-Walled Carbon Nanotubes Subjected to an Externally Applied Longitudinal Magnetic Field: A Nonlocal Elasticity Approach, J. Sound Vibr., 2012, vol. 331, no. 23, pp. 5069–5086. https://doi.org/10.1016/j.jsv.2012.06.005

    Article  ADS  Google Scholar 

  71. Wang, L.F. and Hu, H.Y., Flexural Wave Propagation in Single-Walled Carbon Nanotubes, Phys. Rev. B, 2005, vol. 71, p. 195412. https://doi.org/10.1103/PhysRevB.71.195412

    Article  ADS  Google Scholar 

  72. Ansari, R. and Ramezannezhad, H., Nonlocal Timoshenko Beam Model for the Large-Amplitude Vibrations of Embedded Multiwalled Carbon Nanotubes Including Thermal Effects, Physica E, 2011, vol. 43, no. 6, pp. 1171–1178. https://doi.org/10.1016/j.physe.2011.01.024

    Article  ADS  Google Scholar 

  73. Narendar, S. and Gopalakrishnan, S., Nonlocal Continuum Mechanics Based Ultrasonic Flexural Wave Dispersion Characteristics of a Monolayer Grapheme Embedded in Polymer Matrix, Composites B, 2012, vol. 43, no. 8, pp. 3096–3103. https://doi.org/10.1016/j.compositesb.2012.04.058

    Article  Google Scholar 

  74. Wang, Q. and Wang, C.M., The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes, Nanotechnology, 2007, vol. 18, p. 075702. https://doi.org/10.1088/0957-4484/18/7/075702

    Article  Google Scholar 

  75. Ansari, R., Rouhi, H., and Sahmani, S., Calibration of the Analytical Nonlocal Shell Model for Vibrations of Double-Walled Carbon Nanotubes with Arbitrary Boundary Conditions Using Molecular Dynamics, Int. J. Mech. Sci., 2011, vol. 53, pp. 786–792. https://doi.org/10.1016/j.ijmecsci.2011.06.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bourada.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 1, pp. 95–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulay, N., Liani, M., Bourada, F. et al. Vibration Analysis of Single-Walled Carbon Nanotubes Embedded in a Polymer Matrix under Magnetic Field Considering the Surface Effect Based on Nonlocal Strain Gradient Elasticity Theory. Phys Mesomech 26, 329–345 (2023). https://doi.org/10.1134/S1029959923030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923030074

Keywords:

Navigation