Skip to main content

Modeling of Bionically Inspired Antifriction and Connective Layers in a Joint Prosthesis


The paper analyzes the stress-strain state of antifriction and connective layers in a joint prosthesis which imitate their biological analogues: articular cartilage and connective tissue between joints and bones. A three-dimensional elasticity problem is solved assuming that these functional layers feature macroscopic homogeneity and transverse isotropy and that their thickness is small compared to the characteristic size of the zone exposed to surface loads. A general solution for arbitrary boundary conditions is derived as a power series in a small parameter which is equal to the ratio of layer thickness to contact zone radius. The solution provides more accurate estimates of the stress-strain state parameters than the Winkler and Pasternak elastic foundation models. A generalization of micromechanical models is presented for describing the deformation of gradient surface layers of a polymer joint prosthesis.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Kupchinov, B.I., Ermakov, S.F., and Beloyenko, E.D., Biotribology of Synovial Joints, Minsk: Vedy, 1997.

  2. Chizhik, S.A., Arushko, A.V., Wierzcholski, K., Structure and Elastic Properties of a Cartilage at Micro- and Nanolevel, Russ. J. Biomech., 2008, vol. 12, no. 2, pp. 13–22.

    Google Scholar 

  3. Shilko, S.V. and Ermakov, S.F., The Role of Liquid Phase and Porous Structure of Cartilage in Formation of Biomechanical Properties of Joints. Part 1, Russ. J. Biomech., 2008, vol. 12, no. 2, pp. 31–39.

    Google Scholar 

  4. Suslov, A.A., Ermakov, S.F., Beletzky, A.V., Shilko, S.V., and Nikolaev, V.I., The Role of Liquid Phase and Porous Structure of Cartilage in Formation of Biomechanical Properties of Joints. Part 2, Russ. J. Biomech., 2008, vol. 12, no. 4, pp. 33–39.

    Google Scholar 

  5. Devitt, B.M., Bell, S.W., Webster, K.E., Feller, J.A., and Whitehead, T.S., Surgical Treatments of Cartilage Defects of the Knee: Systematic Review of Randomised Controlled Trials, Knee, 2017, vol. 24(3), pp. 508–517.

    Article  Google Scholar 

  6. Mithoefer, K., Williams III, R.J., Warren, R.F., Potter, H.G., Spock, C.R., Jones, E.C., Wickiewicz, T.L., and Marx, R.G., The Microfracture Technique for the Treatment of Articular Cartilage Lesions in the Knee. A Prospective Cohort Study, J. Bone Joint Surg. Am., 2005, vol. 87(9), pp. 1911–1920.

    Article  Google Scholar 

  7. Marlovits, S., Zeller, P., Singer, P., Resinger, C., and Vécsei, V., Cartilage Repair: Generations of Autologous Chondrocyte Transplantation, Eur. J. Radiol., 2006, vol. 57, no. 1, pp. 24–31.

    Article  Google Scholar 

  8. Barber, F.A. and Chow, J.C., Arthroscopic Osteochondral Transplantation: Histologic Results, Arthroscopy, 2001, vol. 17(8), pp. 832–835.

    Article  Google Scholar 

  9. Tigani, D., Fosco, M., Bena Ayad, R., and Fantasia, R., Orthopaedic Implant Materials and Design, in Wear of Orthopaedic Implants and Artificial Joints, Affatato, S., Ed., Cambridge: Woodhead Publ., 2012, pp. 133–177.

  10. Tudor, A., Laurian, T., and Popescu, V.M., The Effect of Clearance and Wear on the Contact Pressure of Metal on Polyethylene Hip Prostheses, Tribiology Int., 2013, vol. 63, pp. 158–168.

    Article  Google Scholar 

  11. Baker, M.I., Walsh, S.P., Schwartz, Z., and Boyan, B.D., A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications, J. Biomed. Mater. Res. B. Appl. Biomater., 2012, vol. 100(5), pp. 1451–1457.

    Article  Google Scholar 

  12. Yang, F., Zhao, J., Koshut, W.J., Watt, J., Riboh, J.C., Gall, K., and Wiley, B.J., A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage, Adv. Funct. Mater., 2020, article 2003451.

  13. Zhang, B., Gao, L., Ma, L., Luo, Y., Yang, H., and Cui, Z., 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs, Engineering, 2019, vol. 5, no. 4, pp. 777–794.

    Article  Google Scholar 

  14. Merola, M. and Affatato, S., Materials for Hip Prostheses: A Review of Wear and Loading Considerations, Materials, 2019, vol. 12(3), p. 495.

    Article  ADS  Google Scholar 

  15. Murakami, T., Sawae, Y., Nakashima, K., and Fisher, J., Tribological Behaviour of Artificial Cartilage in Thin Film Lubrication, in Thinning Films and Tribological Interfaces, Dowson, D., et al., Eds., San-Diego, CA: Elsevier Science B.V., 2000, pp. 317–327.

  16. Pinchuk, L.S., Tsvetkova, E.A., and Nikolaev, V.I., Frictional Material for Endoprostheses Having Cartilage Structure, Tren. Iznos., 1995, vol. 16, no. 3, pp. 505–510.

    Google Scholar 

  17. Lyukshin, B.A., Shilko, S.V., Panin, S.V., et al., Disperse-Filled Polymer Composites for Engineering and Medicine, Novosibirsk: SB RAS Publ., 2017.

  18. Volkov-Bogorodskii, D.B. and Lurie, S.A., Eshelby Integral Formulas in Gradient Elasticity, Mech. Solids, 2010, vol. 45, pp. 648–656.

    Article  ADS  Google Scholar 

  19. Belov, P.A., Volkov-Bogorodskii, D.B., Dudchenko, A.A., Kochemasova, E.I., Lurie, S.A., Obraztsov, I.F., Potupchik, E.M., Shumova, N.P., and Yanovsky, Yu.G., Fundamentals and Interface Layer Theory, Mekh. Komp. Mater. Konstr., 2004, no. 4, pp. 596–612.

    Google Scholar 

  20. Fabrikant, V.I., Solution of Contact Problems for a Transversely Isotropic Elastic Layer Bounded to an Elastic Half-Space, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 2009, vol. 223, no. 11, pp. 2487–2499.

    Article  Google Scholar 

  21. Fabrikant, V.I., Contact Problems for Several Transversely Isotropic Elastic Layers Bounded to an Elastic Half-Space, ZAMM, 2011, vol. 91, no. 3, pp. 214–246.

    Article  ADS  Google Scholar 

  22. Aleksandrov, V.M., Asymptotic Solution of the Contact Problem for a Thin Elastic Layer, J. Appl. Math. Mech., 1969, vol. 33, pp. 49–63.

    Article  MathSciNet  Google Scholar 

  23. Jaffar, M.J., Asymptotic Behavior of Thin Elastic Layer Bonded and Unbonded to a Rigid Foundation, Int. J. Mech. Sci., 1989, vol. 31, pp. 229–235.

    Article  Google Scholar 

  24. Jaffar, M.J., A General Solution to the Axisymmetric Frictional Contact Problem of a Thin Bonded Elastic Layer, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 1997, vol. 211, pp. 549–557.

    Article  Google Scholar 

  25. Pasternak, P.L., On a New Method of Analysis of an Elastic Foundation by means of Two Foundation Constants, Moscow: Gos. Izd. Lit. Stroit. Arkhitekt., 1954.

  26. Winkler, E., Die Lehre von der Elastizität und Festigkeit, Prague: Verlag von H. Dominicus, 1867.

  27. Goryacheva, I.G., Gubenko, M.M., and Makhovskaya, Yu.Yu., Sliding of a Spherical Indenter on a Viscoelastic Foundation with the Forces of Molecular Attraction Taken into Account, J. Appl. Mech. Tech. Phys., 2014, vol. 55, pp. 81–88.

    Article  ADS  MathSciNet  Google Scholar 

  28. Christoforou, A.P., On the Contact of a Spherical Indenter and a Thin Composite Laminate, Compos. Struct., 1993, vol. 26, pp. 77–82.

    Article  ADS  Google Scholar 

  29. Christensen, R., Mechanics of Composite Materials, New York: John Wiley & Sons, 1979.

Download references


The work was supported by BRFFR-RFBR projects No. 20-58-00032 (T20R-223), T21ET-016 and by project FWRW-2021-0010 under State Assignment for ISPMS SB RAS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. V. Shil’ko.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 5, pp. 106–113.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shil’ko, S.V., Chernous, D.A. & Panin, S.V. Modeling of Bionically Inspired Antifriction and Connective Layers in a Joint Prosthesis. Phys Mesomech 26, 93–99 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: