Skip to main content
Log in

Mesostructure of a Tectonic Fault Slip Zone

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Frictional sliding behavior along a tectonic fault is governed by self-organization of the medium in the narrow central zone of the fault. Heterogeneous surfaces of rock blocks have specific contact spots between different-sized asperities. The structural and frictional properties of these spots determine the occurrence of various slip regimes along the fault: from continuous creep and slow slip events to dynamic rupture. Due to the impossibility of direct observations at seismogenic depths, it is critically important to obtain reliable information about the characteristics of the contact spots on the fault slip surface. In this work, data from the earthquake catalog for Northern California are used to reveal structural features of slip zones in different segments of the San Andreas and Calaveras faults on scales from 0.1 to 10 km. It is shown that linear elongated clusters are formed in the contact region, which are separated by a characteristic distance from 4 to 9 km. The clusters present a system of contact spots with a statistically self-similar structure and a self-similarity index from 0.7 to 1.6. Analysis showed that the characteristic size of self-similar clusters is about 1 km, and a coseismic rupture that originates at the same contact spot of a cluster can cover different spatial scales from meters to kilometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Kocharyan, G.G., Geomechanics of Faults, Moscow: GEOS, 2016.

  2. Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge University Press, 2019.

  3. Saffer, D. and Wallace, L., The Frictional, Hydrologic, Metamorphic and Thermal Habitat of Shallow Slow Earthquakes, Nat. Geosci., 2015, vol. 8, pp. 594–600. https://doi.org/10.1038/ngeo2490

    Article  ADS  Google Scholar 

  4. Burgmann, R., The Geophysics, Geology and Mechanics of Slow Fault Slip, Earth Planet. Sci. Lett., 2018, vol. 495, pp. 112–134. https://doi.org/10.1016/j.epsl.2018.04.062

    Article  ADS  Google Scholar 

  5. Yabe, S. and Ide, S., Slip-Behavior Transitions of a Heterogeneous Linear Fault, J. Geophys. Res. Solid Earth, 2017, vol. 122, pp. 387–410. https://doi.org/10.1002/2016JB013132

    Article  ADS  Google Scholar 

  6. Kocharyan, G.G., Ostapchuk, A.A., and Pavlov, D.V., Fault Sliding Modes—Governing, Evolution and Transformation. Multiscale Biomechanics and Tribology of Inorganic and Organic Systems, in Springer Tracts in Mechanical Engineering, Ostermeyer, G.P., Popov, V.L., Shilko, E.V., and Vasiljeva, O.S., Eds., Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-60124-9_15

  7. Scholz, C.H. and Campos, J., The Seismic Coupling of Subduction Zones Revisited, J. Geophys. Res. B, 2012, vol. 117, p. 05310. https://doi.org/10.1029/2011JB009003

    Article  ADS  Google Scholar 

  8. Tal, Y. and Hager, B.H., The Slip Behavior and Source Parameters for Spontaneous Slip Events on Rough Faults Subjected to Slow Tectonic Loading, J. Geophys. Res. Solid Earth, 2018, vol. 123, no. 2, pp. 1810–1823. https://doi.org/10.1002/2017JB014737

    Article  ADS  Google Scholar 

  9. Ye, L., Kanamori, H., and Lay, T., Global Variations of Large Megathrust Earthquake Rupture Characteristics, Sci. Adv., 2018, vol. 4, article eaao4915.

  10. Cirella, A., Piatanesi, A., Tinti, E., Chini, M., and Cocco, M., Complexity of the Rupture Process during the 2009 L’Aquila, Italy, Earthquake, Geophys. J. Int., 2012, vol. 190, pp. 607–621. https://doi.org/10.1111/j.1365-246X.2012.05505.x

    Article  ADS  Google Scholar 

  11. Gusev, A.A., High-Frequency Radiation from an Earthquake Fault: A Review and a Hypothesis of Fractal Rupture Front Geometry, Pure Appl. Geophys., 2013, vol. 170, pp. 65–93. https://doi.org/10.1007/s00024-012-0455-y

    Article  ADS  Google Scholar 

  12. Kocharyan, G.G., Kishkina, S.B., and Ostapchuk, A.A., Seismic Picture of a Fault Zone. What Can Be Gained from the Analysis of Fine Patterns of Spatial Distribution of Weak Earthquake Centers? Geodyn. Tectonophys., 2010, vol. 1, no. 4, pp. 419–440.

    Article  Google Scholar 

  13. Ross, Z.E., Cochran, E.S., Trugman, D.T., and Smith, J.D., 3D Fault Architecture Controls the Dynamism of Earthquake Swarms, Science, 2020, vol. 368, no. 6497, pp. 1357–1361. https://doi.org/10.1126/science.abb0779

    Article  ADS  MathSciNet  Google Scholar 

  14. Waldhauser, F. and Schaff, D.P., Large-Scale Relocation of Two Decades of Northern California Seismicity Using Cross-Correlation and Double-Difference Methods, J. Geophys. Res. B, 2008, vol. 113, p. 08311. https://doi.org/10.1029/2007JB005479

    Article  ADS  Google Scholar 

  15. Wiemer, S., A Software Package to Analyze Seismicity: ZMAP, Seismol. Res. Lett., 2001, vol. 72, no. 3, pp. 373–382. https://doi.org/10.1785/gssrl.72.3.373

    Article  Google Scholar 

  16. Gutenberg, R. and Richter, C.F., Frequency of Earthquakes in California, Bullet. Seismol. Soc. Am., 1944, vol. 34. pp. 185–188.

    Article  Google Scholar 

  17. Seminskii, K.Zh., Internal Structure of Continental Fault Zones. Tectonophysical Aspect, Novosibirsk: Izd. SO RAN, Geo, 2003.

  18. Savage, H.M. and Brodsky, E.E., Collateral Damage: Evolution with Displacement of Fracture Distribution and Secondary Fault Strands in Fault Damage Zones, J. Geophys. Res. B, 2011, vol. 116, p. 03405. https://doi.org/10.1029/2010JB007665

    Article  ADS  Google Scholar 

  19. Clark, P.J. and Evans, F.J., Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations, Ecology, 1954, vol. 35, pp. 445–453. https://doi.org/10.2307/1931034

    Article  Google Scholar 

  20. Hentschet, H. and Procaccia, I., The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors, Physica D, 1983, vol. 8, pp. 435–444.

    Article  ADS  MathSciNet  Google Scholar 

  21. Seno, T., Fractal Asperities, Invasion of Barriers, and Interplate Earthquakes, Earth Planets Space, 2003, vol. 55, pp. 649–665. https://doi.org/10.1186/BF03352472

    Article  ADS  Google Scholar 

  22. Mykulyak, S.V., Hierarchical Block Model for Earthquakes, Phys. Rev. E, 2018, vol. 97, p. 062130. https://doi.org/10.1103/PhysRevE.97.062130

    Article  ADS  Google Scholar 

  23. Kocharyan, G.G. and Kishkina, S.B., The Physical Mesomechanics of the Earthquake Source, Phys. Mesomech., 2021, vol. 24, no. 4, pp. 343–356. https://doi.org/10.1134/S1029959921040019

    Article  Google Scholar 

  24. Brune, J.N., Tectonic Stress and Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res., 1970, vol. 75, pp. 4997–5009. https://doi.org/10.1029/JB075i026p04997

    Article  ADS  Google Scholar 

  25. Allmann, B.P. and Shearer, P.M., Spatial and Temporal Stress Drop Variations in Small Earthquakes near Parkfield, California, J. Geophys. Res. B, 2007, vol. 112, p. 04305. https://doi.org/10.1029/2006JB004395

    Article  ADS  Google Scholar 

  26. Kovalev, A., Yazhao, Z., Hui, C., and Meng, Y., A Concept of the Effective Surface Profile to Predict the Roughness Parameters of Worn Surface, Front. Mech. Eng., 2019, vol. 5, p. 31. https://doi.org/10.3389/fmech.2019.00031

    Article  Google Scholar 

  27. Chen, X., Madden, A.S., Bickmore, B.R., and Reches, Z., Dynamic Weakening by Nanoscale Smoothing during High-Velocity Fault Slip, Geology, 2013, vol. 41, no. 7, pp. 739–742. https://doi.org/10.1130/G34169.1

    Article  ADS  Google Scholar 

  28. Mukhopadhyay, M., Biswas, U., Mandal, N., and Misra, S., On the Development of Shear Surface Roughness, J. Geophys. Res. Solid Earth, 2019, vol. 124, pp. 1273–1293. https://doi.org/10.1029/2018JB016677

    Article  ADS  Google Scholar 

  29. Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., and Brodsky, E.E., Roughness of Fault Surfaces over Nine Decades of Length Scales, J. Geophys. Res. B, 2012, vol. 117, p. 08409. https://doi.org/10.1029/2011JB009041

    Article  ADS  Google Scholar 

  30. Turcotte, D.L., Fractals and Fragmentation, J. Geophys. Res. B, 1986, vol. 91, no. 2, pp. 1921–1926.

    Article  ADS  Google Scholar 

  31. Ide, S., Frequent Observations of Identical Onsets of Large and Small Earthquakes, Nature, 2019, vol. 573, pp. 112–116. https://doi.org/10.1038/s41586-019-1508-5

    Article  ADS  Google Scholar 

  32. Makarov, P.V., Evolutionary Nature of Destruction of Solids and Media, Phys. Mesomech., 2007, vol. 10, no. 3–4, pp. 134–147.

    Article  Google Scholar 

  33. Kocharyan, G.G. and Kulyukin, A.M., Study of Caving Features for Underground Workings in a Rock Mass of Block Structure with Dynamic Action. Part II. Mechanical Properties of Interblock Gaps, J. Mining Sci., 1994, vol. 30, no. 5, pp. 437–446.

    Article  Google Scholar 

  34. Huang, J. and Turcotte, D.L., Fractal Distributions of Stress and Strength and Variations of b-Value, Earth Planet. Sci. Lett., 1988, vol. 91, no. 1–2, pp. 223–230. https://doi.org/10.1016/0012-821X(88)90164-1

    Article  ADS  Google Scholar 

  35. Majumdar, A. and Bhushan, B., Fractal Model of Elastic-Plastic Contact between Rough Surfaces, ASME. J. Tribol., 1991, vol. 113, no. 1, pp. 1–11.

    Article  Google Scholar 

  36. Kemeny, J.M. and Hagaman, R.M., An Asperity Model to Simulate Rupture along Heterogeneous Fault Surfaces, Pure Appl. Geophys., 1992, vol. 138, pp. 549–567. https://doi.org/10.1007/BF00876338

    Article  ADS  Google Scholar 

  37. Popov, V.L., Contact Mechanics and Friction. Physical Principles and Applications, Heidelberg: Springer, 2010.

  38. Métois, M., Vigny, C., and Socquet, A., Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms along the Chilean Subduction Zone (38°–18°S), Pure Appl. Geophys., 2016, vol. 173, pp. 1431–1449. https://doi.org/10.1007/s00024-016-1280-5

    Article  ADS  Google Scholar 

  39. Plata-Martinez, R., Ide, S., Shinohara, M., Garcia, E.S., Mizuno, N., Dominguez, L.A., Taira, T., Yamashita, Y., Toh, A., Yamada, T., Real, J., Husker, A., Cruz-Atienza, V.M., and Ito, Y., Shallow Slow Earthquakes to Decipher Future Catastrophic Earthquakes in the Guerrero Seismic Gap, Nat. Commun., 2021, vol. 12, p. 3976. https://doi.org/10.1038/s41467-021-24210-9

    Article  ADS  Google Scholar 

  40. Panin, V.E., Synergetic Principles of Physical Mesomechanics, Phys. Mesomech., 2000, vol. 3, no. 6, pp. 5–34.

    Google Scholar 

  41. Besedina, A.N., Kishkina, S.B., and Kocharyan, G.G., Source Parameters of Microseismic Swarm Events Induced by the Explosion at the Korobkovskoye Iron Ore Deposit, Izv. Phys. Sol. Earth, 2021, vol. 57, no. 3, pp. 348–365.

    Article  Google Scholar 

  42. Ruzhich, V.V., Vakhromeev, A.G., Levina, E.A., Sverkunov, S.A., and Shilko, E.V., Control of Seismic Activity in Tectonic Fault Zones Using Vibrations and Fluid Injection in Deep Wells, Phys. Mesomech., 2021, vol. 24, no. 1, pp. 85–97. https://doi.org/10.1134/S1029959921010124

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research, project No. 19-05-00378 (G.G. Kocharyan—problem formulation, approach development, analysis and discussion, writing), the Russian Science Foundation, project No. 20-77-10087 (A.A. Ostapchuk—formulation of the problem of seismological data analysis, development and implementation of the fractal analysis algorithm, analysis and discussion, writing), and the Program of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Kocharyan.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 5, pp. 94–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G., Ostapchuk, A.A. Mesostructure of a Tectonic Fault Slip Zone. Phys Mesomech 26, 82–92 (2023). https://doi.org/10.1134/S1029959923010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923010095

Keywords:

Navigation