Skip to main content
Log in

Phase Formation in Reactive Sintering with Reduction

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Among the increasingly popular materials are composites combining the properties of metals and ceramic, and also the properties that result from the interaction of their dissimilar components. This paper provides a brief review of methods used to prepare components for synthesizing oxide-doped composites. The review is supplemented with experimental data on the sintering of Ti-based powder mixtures and with an analysis of physicochemical stages that may accompany the sintering of Ti–Al–Fe2O3 and Ti–Fe–Al2O3 powders of the same elemental composition under controlled heating. It is found that the sequence of phase formation stages depends on the factors of interparticle contacts. The sintering of powder mixtures composed of two metals and an oxide phase creates conditions for the formation of complex solutions (TiFeAl for Ti–Al–Fe2O3) and double oxides (FeAl2O4 for Ti–Fe–Al2O3) and decreases the probability of intermetallic compound formation. Of importance for Ti–Al–Fe2O3 is the mode of mixing as it determines the stages of mesoscale processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Klimov, D.A., Myktybekov, B., Nizovtsev, V.E., and Ukhov, P.A., Perspective Application of Nanostructured Composite Materials Based on High-Melting Carbides and Oxides for Aerospace Objects, Trudy MAI, 2011, no. 46. www.mai.ru/science/trudy

  2. Falodun, O.E., Obadele, B.A., Oke, S.R., Okoro, A.M., and Olubambi, P.A., Titanium-Based Matrix Composites Reinforced with Particulate, Microstructure, and Mechanical Properties Using Spark Plasma Sintering Technique: A Review, Int. J. Adv. Manuf. Technol., 2019, vol. 102, pp. 1689–1701. https://doi.org/10.1007/s00170-018-03281-x

    Article  Google Scholar 

  3. Yeh, Ch.-L. and Ke, Ch.-Y., Combustion Synthesis of FeAl–Al2O3 Composites with TiB2 and TiC Additions via Metallothermic Reduction of Fe2O3 and TiO2, Trans. Nonferrous Met. Soc. China, 2020, vol. 30, pp. 2510–2517. https://doi.org/10.1016/S1003-6326(20)65397-3

    Article  Google Scholar 

  4. Yeh, C.L. and Ke, C.Y., Synthesis of TiB2–Al2O3–FeAl Composites Via Self-Sustaining Combustion with Fe2O3/ TiO2-Based Thermite Mixtures, Ceramics Int., 2018, vol. 44, pp. 16030–16034. https://doi.org/10.1016/j.ceramint.2018.06.040

    Article  Google Scholar 

  5. Leyens, C. and Peters, M., Titanium and Titanium Alloys: Fundamentals and Applications, Weinheim: Wiley-VCH, 2003. https://onlinelibrary.wiley.com/doi/book/10.1002/3527602119

  6. Kolli, R.P. and Devaraj, A., A Review of Metastable beta Titanium Alloys, Metals, 2018, vol. 8(7), p. 506. https://doi.org/10.3390/met8070506

  7. Yatsenko, I.V., Samboruk, A.R., and Kuznets, E.A., Production of TiС + Al2O3 + AlFe Composite from Granulated Batch by Using SHS, Sovr. Mater. Tekh. Tekhnol., 2016, no. 3(6), pp. 149–153.

    Google Scholar 

  8. Musa, C., Licheri, R., Locci, A.M., Orru, R., Cao, G., Rodriguez, M.A., and Jaworska, L., Energy Efficiency during Conventional and Novel Sintering Processes: The Case of Ti–Al2O3–TiC Composites, J. Clean. Product., 2009, vol. 17, pp. 877–882. https://doi.org/10.1016/j.jclepro.2009.01.012

    Article  Google Scholar 

  9. Yan, Y., Zou, J., Zhang, X., Xiao, Q., Chen, B., Huang, F., Li, X., Yang, B., and Liang, T., Investigation on Microstructure and Properties of TiC0.5–Al2O3/Cu Composites Fabricated by a Novel In-Situ Reactive Synthesis, Ceramics Int., 2021, vol. 47, pp. 18858–18865. https://doi.org/10.1016/j.ceramint.2021.03.225

    Article  Google Scholar 

  10. Kobyakov, V.P. and Kovalev, D.Yu., Phase Constitution of the Combustion Products of Thermite Mixtures Modified by Titanium Oxide, Combust. Expl. Shock Waves, 2007, vol. 43, no. 6, pp. 674–681. https://doi.org/10.1007/s10573-007-0090-6

    Article  Google Scholar 

  11. Oke, S.R., Falodun, O.E., Motsa, B.G., Ige, O.O., and Olubambi, P.A., Spark Plasma Sintering of Al-Ti-Al2O3 Composite, ICMPC-2019. Mater. Today Proc., 2019, vol. 18, pp. 3946–3951. https://doi.org/10.1016/j.matpr.2019.07.335

    Article  Google Scholar 

  12. Matsugi, K., Kuramoto, H., Hatayama, T., and Yanagisawa, O., Temperature Distribution at Steady State under Constant Current Discharge in Spark Sintering Process of Ti and Al2O3 Powders, J. Mater. Process. Technol., 2004, vol. 146, pp. 274–281. https://doi.org/10.1016/j.jmatprotec.2003.11.002

    Article  Google Scholar 

  13. Bakulin, A.V., Kulkov, S.S., and Kulkova, S.E., Adhesive Properties of the TiAl/Al2O3 Interfaces, Russ. Phys. J., 2020, vol. 63, pp. 3–9. https://doi.org/10.1007/s11182-020-02089-1

    Article  Google Scholar 

  14. Bakulin, A.V., Hocker, S., and Kulkova, S.E., Role of Intermediate Metal and Oxide Layers in Change of Adhesion Properties of TiAl/Al2O3 Interface, Phys. Mesomech., 2021, vol. 24, no. 5, pp. 523–532. https://doi.org/10.1134/S1029959921050039

    Article  Google Scholar 

  15. Cai, Z.H. and Zhang, D.L., Sintering Behaviour and Microstructures of Ti(Al, O)/Al2O3, Ti3Al(O)/Al2O3 and TiAl(O)/Al2O3 In Situ Composites, Mater. Sci. Eng. A, 2006, vol. 419, pp. 310–317. https://doi.org/10.1016/j.msea.2006.01.030

    Article  Google Scholar 

  16. Rafiei, M., Enayati, M.H., and Karimzadeh, F., Kinetic Analysis of Thermite Reaction in Al–Ti–Fe2O3 System to Produce (Fe, Ti)3Al–Al2O3 Nanocomposite, Powder Technol., 2014, vol. 253, pp. 553–560. https://doi.org/10.1016/j.powtec.2013.12.028

    Article  Google Scholar 

  17. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226. https://doi.org/10.1016/S0065-2377(08)60093-9

    Article  Google Scholar 

  18. Kobyakov, V.P. and Kovalev, D.Yu., Effect of Heat Release Conditions on the Phase Composition of the Combustion Products of a Fe2O3/TiO2/Al/C Thermite Mixture, Combust. Explos. Shock Waves, 2008, vol. 44, no. 4, pp. 405–409. https://doi.org/10.1007/s10573-008-0066-1

    Article  Google Scholar 

  19. Gao, Z.-F., Wu, Z.-J., and Liu, W.-M., Preparation and Chemical Looping Combustion Properties of Fe2O3/Al2O3 Derived from Metallurgy Iron-Bearing Dust, J. Environment. Chem. Eng., 2016, vol. 4, pp. 1653–1663. https://doi.org/10.1016/j.jece.2016.02.031

    Article  Google Scholar 

  20. Rogachev, A.S. and Mukasyan, A.G., Combustion for Materials Synthesis: Introduction to Structural Macrokinetics, CRC Press, 2014. https://www.routledge.com/Combustion-for-Material-Synthesis/Rogachev-Mukasyan/p/book/9781482239515

  21. Smolyakov, V.K., Maksimov, Yu.M., and Prokofiev, V.G., Dynamics of Structure Formation in Combustion Products of Gasless Systems, Mathematical Modeling of Combustion and Explosion of High-Energy Systems, Vesenin, I.M., Ed., Tomsk: Tomsk State Univ. Press, 2006, pp. 221–315.

  22. Smolyakov, V.K., Structural Mechanics of a Substance in the Wave of Self-Propagating High-Temperature Synthesis, Phys. Mesomech., 1999, vol. 2, no. 3, p. 55.

    Google Scholar 

  23. Baras, F. and Kondepudi, D., A Multilayer Model for Self-Propagating High-Temperature Synthesis of Intermetallic Compounds, J. Phys. Chem. B, 2007, vol. 111, pp. 6457–6468. https://pubs.acs.org/doi/10.1021/jp066776p

    Article  Google Scholar 

  24. Knyazeva, A. and Kryukova, O., Simulation of the Synthesis of Multiphase Composites on a Substrate, Taking into Account the Staging of Chemical Reactions, Appl. Solid State Chem., 2019, no. 1, pp. 32–44. https://doi.org/10.18572/2619-0141-2018-2-3-2-16

    Article  Google Scholar 

  25. Makarov, P.V., Beketov, K.A., Atamanov, O.A., and Kulkov, S.N., Tough Structural Ceramics, in Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Cambridge: Cambridge Int. Sci. Publ., 1995, pp. 298–312. http://www.demon.co.uk/cambsci/homepaje.htm

  26. Skorokhod, V.V., Solonin, Yu.M., and Uvarov, I.V., Chemical, Diffusion, and Rheological Processes in Powder Materials Technologies, Kiev: Naukova Dumka, 1990.

  27. Andrievsky, R.A. and Ragulya A.V., Nanostructured Materials. Textbook, Moscow: Academia, 2005.

  28. Panin, V.E., The Physical Foundations of the Mesomechanics of a Medium with Structure, Russ. Phys. J., 1992, vol. 35, no. 4, pp. 305–315. https://doi.org/10.3103/S0025654410040023

    Article  Google Scholar 

  29. Nekrasov, E.A., Maksimov, Yu.M., and Adlushin, A.P., Calculations of Critical Thermal Explosion Conditions in Hafnium–Boron and Tantalum–Carbon Systems Using State Diagrams, Combust, Explos. Shock Waves, 1980, vol. 16, no. 3, pp. 342–347. https://link.springer.com/content/pdf/10.1007/BF00742138.pdf

    Article  Google Scholar 

  30. Filimonov, V.Yu, and Koshelev, K.B., Adiabatic Thermal Explosion in Disperse Condensed Systems with Limited Solubility of the Reactants in the Product Layer, Combust. Explos. Shock Waves, 2013, vol. 49, no. 4, pp. 463–471. https://doi.org/10.1134/S0010508213040096

    Article  Google Scholar 

  31. Lapshin, O.V. and Ovcharenko, V.E., A Mathematical Model of High-Temperature Synthesis of Nickel Aluminide Ni3Al by Thermal Shock of a Powder Mixture of Pure Elements, Combust. Explos. Shock Waves, 1996, vol. 32, no. 3, pp. 299–305. https://doi.org/10.1007/BF01998460

    Article  Google Scholar 

  32. Evstegneev, V.V., Filionov, V.Yu, and Koshelev, K.B., Mathematical Model of Phase-Formation Processes in a Binary Mixture of Ti and Al Powders in the Regime of a Nonadiabatic Thermal Explosion, Combust. Explos. Shock Waves, 2007, vol. 43, no. 2, pp. 170–175. https://doi.org/10.1007/s10573-007-0023-4

    Article  Google Scholar 

  33. Knyazeva, A.G., Sorokova, S.N., Pobol, A.I., and Goransky, G.G., Modeling of Pulse Electrocontact Sintering of Hard-Alloy Compounds, Chem. Phys. Mesoscop., 2015, vol. 17, no. 2, pp. 239–252.

    Google Scholar 

  34. Sorokova, S.N., Knyazeva, A.G., Pobol, A.I., and Goranskyi, G.G., Mathematical Modeling of Pulsed Electric-Sintering Powders, Appl. Mech. Mater., 2015, vol. 756, pp. 534–539. https://doi.org/10.4028/www.scientific.net/AMM.756.534

    Article  Google Scholar 

  35. Knyazeva, A.G. and Buyakova, S.P., Mathematical Model of Three-Layer Composite Synthesis during Hot Isostatic Pressing, AIP Conf. Proc., 2016, vol. 1783, p. 020092. https://doi.org/10.1063/1.4966385

    Article  Google Scholar 

  36. Olevsky, E. and Froyen, L., Constitutive Modeling of Spark-Plasma Sintering of Conductive Materials, Scripta Mater., 2006, vol. 55, pp. 1175–1178. https://doi.org/10.1016/j.scriptamat.2006.07.009

    Article  Google Scholar 

  37. Olevsky, E., Tikare, V., and Garino, T., Multiscale Modeling of Sintering: A Review, J. Am. Ceram. Soc., 2006, vol. 89(6), pp. 1914–1922. https://doi.org/10.1111/j.1551-2916.2006.01054.x

    Article  Google Scholar 

  38. Yang, Y., Ragnvaldsen, O., Bai, Y., Yi, M., and Xu, B.-X., 3D Non-Isothermal Phase-Field Simulation of Microstructure Evolution during Selective Laser Sintering, npj Comput. Mater., 2019, vol. 5, article 81. https://doi.org/10.1038/s41524-019-0219-7

  39. Jones, W.D., Fundamental Principles of Powder Metallurgy, London: E. Arnold Ltd., 1960.

  40. German, R.M., Powder Metallurgy and Particulate Materials Processing, Princeton, NJ, USA: Metal Powder Industries Federation, 2005.

  41. Geguzin, Yu.E., Physics of Sintering, Moscow: Nauka, 1984.

  42. Phase Diagrams of Binary Metal Systems: Reference Book, Lyakishev, N.P., Ed., Moscow: Metallurgia, 1996.

  43. Mei, J., Halldearn, R.D., and Xiao, P., Mechanisms of the Aluminium-Iron Oxide Thermite Reaction, J. Scripta Mater., 1999, vol. 41(5), pp. 541–548. https://doi.org/10.1016/S1359-6462(99)00148-7

    Article  Google Scholar 

  44. Wang, Yi., Song, X., Jiang, W., Deng, G., Guo, X., Liu, H., and Li, F., Mechanism for Thermite Reactions of Aluminum/Iron-Oxide Nanocomposites Based on Residue Analysis, Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 263–270. https://doi.org/10.1016/S1003-6326(14)63056-9

    Article  Google Scholar 

  45. Loginov, P.A., Levashov, E.A., Potanin, A.Yu., Kudryashov, A.E., Manakova, O.S., Shvyndina, N.V., and Sukhorukova, I.V., Peculiarities of Formation of Sintered Electrodes of the Ti–Ti3P–CaO Composition and Their Application in Technology of Pulsed Electric-Discharge Machining of Titanium, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2015, vol. 4. pp. 45–58. dx.doi.org/10.17073/1997-308X-2015-4-45-58

    Article  Google Scholar 

  46. Boldyrev, V.V., Mechanochemical Processes with the Reaction-Induced Mechanical Activation. Chemo-Mechanical Effect, Russ. Chem. Bull., 2018, vol. 67, pp. 933–948. https://doi.org/10.1007/s11172-018-2162-z

    Article  Google Scholar 

  47. Kachanov, M. and Sevostianov, I., Micromechanics of Materials, with Applications, Bøger: Springer, 2018. https://link.springer.com/book/10.1007/978-3-319-76204-3

  48. Chen, Y., Ma, Y., Yin, Q., Pan, F., Cui, C., Zhang, Z., and Liu, B., Advances in Mechanics of Hierarchical Composite Materials, Compos. Sci. Technol., 2021, vol. 214, p. 108970. https://doi.org/10.1016/j.compscitech.2021.108970

    Article  Google Scholar 

  49. Tsalis, D., Charalambakis, N., Bonnay, K., and Chatzigeorgiou, G., Effective Properties of Multiphase Composites Made of Elastic Materials with Hierarchical Structure, Math. Mech. Solids, 2017, vol. 22, no. 4, pp. 751–770. https://doi.org/10.1177/1081286515612142

    Article  MathSciNet  Google Scholar 

  50. Brinson, L.C. and Lin, W.S., Comparison of Micromechanics Methods for Effective Properties of Multiphase Viscoelastic Composites, Compos. Struct., 1998, vol. 41, no. 3–4, pp. 353–367. https://doi.org/10.1016/S0263-8223(98)00019-1

    Article  Google Scholar 

  51. Wang, M. and Pan, N., Predictions of Effective Physical Properties of Complex Multiphase Materials, Mater. Sci. Eng. R, 2008, vol. 63, pp. 1–30. https://doi.org/10.1016/j.mser.2008.07.001

    Article  Google Scholar 

  52. Guo, Q., Yao, W., Li, W., and Gupta, N., Constitutive Models for the Structural Analysis of Composite Materials for the Finite Element Analysis: A Review of Recent Practices, Compos. Struct., 2021, vol. 260, p. 113267. https://doi.org/10.1016/j.compstruct.2020.113267

    Article  Google Scholar 

Download references

Funding

The work was supported by RSF grant No. 17-19-01425-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Knyazeva.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 5, pp. 46–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korosteleva, E.N., Knyazeva, A.G. & Nikolaev, I.O. Phase Formation in Reactive Sintering with Reduction. Phys Mesomech 26, 39–47 (2023). https://doi.org/10.1134/S1029959923010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923010058

Keywords:

Navigation