Skip to main content
Log in

Elastic Energy Transfer and Thermalization in a Lattice and Phenomenon of Thermal Fireballs

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Here we analyze a numerical model of a cubic lattice with linear elasticity and random heat sources on its upper and lower boundaries, consider methods which can be used for visualizing the kinetics of energy transfer and recording the history of events in such a system, and present some general results for its 2D and 3D cases. Also considered are the formation and propagation of localized energy states (“energy bundles”) and the rise of thermal resistance. It is shown that the thermal resistance at the interfaces of media with different parameters can be used for efficient heat removal and elimination of side effects in friction in a modified Prandtl–Tomlinson model with energy losses via substrate strain generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Fermi, E., Pasta, J., Ulam, S., and Tsingou, M., Studies of Nonlinear Problems, in Los Alamos Report-1955, Los Alamos, 1940.

  2. Fermi, E., Pasta, J., Ulam, S., and Tsingou, M., The Many-Body Problem, in An Encyclopedia of Exactly Solved Models in One Dimension, Mattis, D.C., Ed., Singapore: World Scientific, 1993.

  3. Gavrilov, S.N. and Krivtsov, A.M., Thermal Equilibration in a One-Dimensional Damped Harmonic Crystal, Phys. Rev. E, 1993, vol. 100, p. 022117.

    Article  Google Scholar 

  4. Podolskaya, E.A., Krivtsov, A.M., and Kuzkin, V.A., Discrete Thermomechanics: From Thermal Echo to Ballistic Resonance (a Review), Mech. Control Solids Struct., 2022, vol. 501–533.

  5. Berinskii, I.E. and Kuzkin, V.A., Equilibration of Energies in a Two-Dimensional Harmonic Graphene Lattice, Philos. Trans. R. Soc. A, 2020, vol. 378(2162), p. 20190114.

    Article  ADS  Google Scholar 

  6. Sokolov, A.A., Krivtsov, A.A., and Müller, W.H., Localized Heat Perturbation in Harmonic 1D Crystals: Solutions for an Equation of Anomalous Heat Conduction, Phys. Mesomech., 2017, vol. 20, no. 3, pp. 305–310. https://doi.org/10.1134/S1029959917030067

    Article  Google Scholar 

  7. Nos’e, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, J. Chem. Phys., 1984, vol. 81, p. 511.

    Article  ADS  Google Scholar 

  8. Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, vol. 31, p. 1695.

    Article  ADS  Google Scholar 

  9. Langevin, P., Sur la théorie du mouvement brownien [On the Theory of Brownian Motion], Acad. Sci. Paris, 1908, vol. 146, pp. 530–533.

    Google Scholar 

  10. Lepri, S., Livi, R., and Politi, A., Heat Conduction in Chains of Nonlinear Oscillator, Phys. Rev. Lett., 1997, vol. 78, p. 1896.

    Article  ADS  Google Scholar 

  11. Fillipov, A.E., Hu, B., Li, B., and Zeltser, A., Energy Transport between Two Attractors Connected by a Fermi–Pasta–Ulam Chain, J. Phys. A. Math. Gen., 1998, vol. 31, pp. 7719–7728.

    Article  ADS  Google Scholar 

  12. Filippov, A.E. and Gorb, S.N., Combined Discrete and Continual Approaches in Biological Modelling, Springer, 2020.

  13. Heepe, L., Filippov, A.E., Kovalev, A.E., and Gorb, S.N., Visualization of Wave Propagation and Fine Structure in Frictional Motion of Unconstrained Soft Microstructured Tapes, Tribology Lett., 2017, vol 65, pp. 1–10.

  14. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 1. https://doi.org/10.13140/RG.2.2.34373.73448

  15. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 2. https://doi.org/10.13140/RG.2.2.12563.35362

  16. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 3. https://doi.org/10.13140/RG.2.2.19274.24007

  17. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 4. https://doi.org/10.13140/RG.2.2.13874.07367

  18. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 5. https://doi.org/10.13140/RG.2.2.34006.73283

  19. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 6. https://doi.org/10.13140/RG.2.2.12196.35207

  20. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 7. https://doi.org/10.13140/RG.2.2.25618.12489

  21. Ivanchenko, Yu.M., Lisyansky, A.A., and Filippov, A.E., Fluctuation Effects in Systems with Competing Interactions, Kiev: Naukova Dumka, 1989.

  22. Filippov, A.E., Fluctuating Field near Spinodal, Phys. Lett. A, 1998, vol. 243, pp. 229–235.

    Article  ADS  Google Scholar 

  23. Zeltser, A.S., Soboleva, T.K., and Filippov, A.E., Automatic Blocking of the Nucleation and Universality of Kinetic Phenomena at First Order Phase Transitions, JETP, 1995, vol. 81, pp. 193–201.

    ADS  Google Scholar 

  24. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 8. https://doi.org/10.13140/RG.2.2.18907.23844

  25. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 9. https://doi.org/10.13140/RG.2.2.15551.79526

  26. Swartz, E.T. and Pohl, R.O., Thermal Boundary Resistance, Rev. Mod. Phys., 1989, vol. 61, p. 605.

    Article  ADS  Google Scholar 

  27. Geim, A.K. and Novoselov, K.S., The Rise of Graphene, Nat. Mater., 2007, vol. 6, pp. 183–191.

    Article  ADS  Google Scholar 

  28. Tomlinson, G.A., A Molecular Theory of Friction, Philos. Mag., 1929, vol. 7, p. 905.

    Article  Google Scholar 

  29. Prandtl, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, J. Appl. Math. Mech., 1928, vol. 8, pp. 85–106.

    Google Scholar 

  30. Popov, V.L., The Prandtl–Tomlinson Model for Dry Friction, in Contact Mechanics and Friction, Berlin: Springer, 2017, pp. 173–192.

  31. Filippov, A.E. and Popov, V.L., Fractal Tomlinson Model for Mesoscopic Friction: From Microscopic Velocity-Dependent Damping to Macroscopic Coulomb Friction, Phys. Rev. E, 2007, vol. 75, p. 027103.

    Article  ADS  Google Scholar 

  32. Filippov, A.E., Klafter, J., and Urbakh, M., Friction through Dynamical Formation and Rupture of Molecular Bonds, Phys. Rev. Lett., 2004, vol. 75, p. 135503.

    Article  ADS  Google Scholar 

  33. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 10. https://doi.org/10.13140/RG.2.2.28973.56808

  34. Filippov, A.E. and Popov, V.L., Transfer and Thermalization of Elastic Energy in a Lattice and the Phenomenon of Thermal “Fireballs”: Video 11. https://doi.org/10.13140/RG.2.2.22262.68161

  35. Beygelzimer, Y., Filippov, A.E., Kulagin, R., and Estrin, Y., Turbulent Shear Flow of Solids, arXiv:2111.05148, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Filippov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.E., Popov, V.L. Elastic Energy Transfer and Thermalization in a Lattice and Phenomenon of Thermal Fireballs. Phys Mesomech 25, 523–536 (2022). https://doi.org/10.1134/S1029959922060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922060054

Keywords:

Navigation