Skip to main content
Log in

Mesoeffect of the Dual Mechanism of Hydrogen-Induced Cracking

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

One of the main methods of protecting pipelines and machine parts against stress corrosion and hydrogen embrittlement is to test metals for hydrogen-induced cracking. The hydrogen-induced cracking test is a standard procedure for testing steels and titanium alloys and for studying hydrogen resistance. The experimentally revealed phenomenon of nonuniform hydrogen distribution after hydrogen charging of specimens is called the skin effect. Here we study the influence of the skin effect after hydrogen charging on the crack growth under mechanical stresses and the influence of a 50-μm-thick skin layer on the durability of bulk specimens. A corset-type cylindrical specimen with a circumferential notch is considered. The Oriani decohesion model is chosen as a hydrogen embrittlement model. The investigation is performed using our data on the real nonuniform hydrogen distribution and the literature data on hydrogen diffusion coefficients, diffusion activation energy, steel parameters, cohesive law parameters, as well as other parameters of the hydrogen embrittlement model proposed by Serebrinsky. Hydrogen redistribution is described by the diffusion law taking into account mechanical stresses. Modeling is carried out with the original finite volume code in the axisymmetric setting. Crack propagation parameters are determined. The fracture pattern is complex. Cracking first occurs by the hydrogen-enhanced decohesion mechanism and then by the conventional mechanism, which explains the experimentally observed brittle-ductile fracture behavior in tensile hydrogen-charged specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Askari, M., Aliofkhazraei, M., and Afroukhteh, S., A Comprehensive Review on Internal Corrosion and Cracking of Oil and Gas Pipelines, J. Nat. Gas Sci. Eng., 2019, vol. 71, p. 102971. https://doi.org/10.1016/j.jngse.2019.102971

    Article  Google Scholar 

  2. Maruschak, P.O., Panin, S.V., Chausov, M.G., Bishchak, R.T., and Polyvana, U.V., Effect of Long-Term Operation on Steels of Main Gas Pipeline. Reduction of Static Fracture Toughness, J. Nat. Gas Sci. Eng., 2017, vol. 38, pp. 182–186. https://doi.org/10.1016/j.jngse.2016.12.015

    Article  Google Scholar 

  3. Hafsi, Z., Elaoud, S., and Mishra, M., A Computational Modelling of Natural Gas Flow in Looped Network: Effect of Upstream Hydrogen Injection on the Structural Integrity of Gas Pipelines, J. Nat. Gas Sci. Eng., 2019, vol. 64, pp. 107–117. https://doi.org/10.1016/j.jngse.2019.01.021

    Article  Google Scholar 

  4. Ishaq, H. and Dincer, I., A Comprehensive Study on Using New Hydrogen–Natural Gas And Ammonia–Natural Gas Blends for Better Performance, J. Nat. Gas Sci. Eng., 2020, vol. 81, p. 103362. https://doi.org/10.1016/j.jngse.2020.103362

    Article  Google Scholar 

  5. Ishaq, H. and Dincer, I., Performance Investigation of Adding Clean Hydrogen to Natural Gas for Better Sustainability, J. Nat. Gas Sci. Eng., 2020, vol. 78, p. 103236. https://doi.org/10.1016/j.jngse.2020.103236

    Article  Google Scholar 

  6. Ozturk, M. and Dincer, I., Development of Renewable Energy System Integrated with Hydrogen and Natural Gas Subsystems for Cleaner Combustion, J. Nat. Gas Sci. Eng., 2020, vol. 83, p. 103583. https://doi.org/10.1016/j.jngse.2020.103583

    Article  Google Scholar 

  7. Peng, D.D., Fowler, M., Elkamel, A., Almansoori, A., and Walker, S.B., Enabling Utility-Scale Electrical Energy Storage by a Power-to-Gas Energy Hub and Underground Storage of Hydrogen and Natural Gas, J. Nat. Gas Sci. Eng., 2016, vol. 35, pp. 1180–1199. https://doi.org/10.1016/j.jngse.2016.09.045

    Article  Google Scholar 

  8. Meng, B., Gu, Ch., Zhang, L., Zhou, Ch., Li, X., Zhao, Y., Zheng, J., Chen, X., and Han, Y., Hydrogen Effects on X80 Pipeline Steel in High-Pressure Natural Gas/Hydrogen Mixtures, Int. J. Hydrogen Energy, 2017, vol. 42(11), pp. 7404–7412. https://doi.org/10.1016/j.ijhydene.2016.05.145

    Article  Google Scholar 

  9. Nguyen, T.T., Park, J., Kim, W.S., Nahm, S.H., and Beak, U.B., Effect of Low Partial Hydrogen in a Mixture with Methane on the Mechanical Properties of X70 Pipeline Steel, Int. J. Hydrogen Energy, 2020, vol. 45(3), pp. 2368–2381. https://doi.org/10.1016/j.ijhydene.2019.11.013

    Article  Google Scholar 

  10. Nguyen, T.T., Tak, N., Park, J., Nahm, S.H., and Beak, U.B., Hydrogen Embrittlement Susceptibility of X70 Pipeline Steel Weld under a Low Partial Hydrogen Environment, Int. J. Hydrogen Energy, 2020, vol. 45(43), pp. 23739–23753. https://doi.org/10.1016/j.ijhydene.2020.06.199

    Article  Google Scholar 

  11. Shang, J., Zheng, J., Hua, Zh., Li, Y., Gu, Ch., Cui, T., and Meng, B., Effects of Stress Concentration on the Mechanical Properties of X70 in High-Pressure Hydrogen-Containing Gas Mixtures, Int. J. Hydrogen Energy, 2020, vol. 45(52), pp. 28204–28215. https://doi.org/10.1016/j.ijhydene.2020.02.125

    Article  Google Scholar 

  12. Nguyen, T.T., Park, J.S., Kim, W.S., Nahm, S.H., and Beak, U.B., Environment Hydrogen Embrittlement of Pipeline Steel X70 under Various Gas Mixture Conditions with in Situ Small Punch Tests, Mater. Sci. Eng. A, 2020, vol. 781, p. 139114. https://doi.org/10.1016/j.msea.2020.139114

    Article  Google Scholar 

  13. ISO11114-4. Transportable Gas Cylinders—Compatibility of Cylinder and Valve Materials with Gas Contents. Part 4: Test Methods for Selecting Metallic Materials Resistant to Hydrogen Embrittlement, ISO 11114-4:2017, Int. Organization for Standardization, 2017.

  14. ISO16573. Steel—Measurement Method for the Evaluation of Hydrogen Embrittlement Resistance of High Strength Steels, ISO 16573:2015, Int. Organization for Standardization, 2015.

  15. ISO17081. Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO 17081:2014, Int. Organization for Standardization, 2014.

  16. TM0284. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking. TM0284-2016 ANSI/NACE Standard, Houston, TX: NACE Int., 2016.

  17. Alekseeva, E.L., Belyaev, A.K., Zegzhda, A.S., Polyanskiy, A.M., Polyanskiy, V.A., Frolova, K.P., and Yakovlev, Yu.A., Boundary Layer Influence on the Distribution of Hydrogen Concentrations during Hydrogen-Induced Cracking Test of Steels. Diagnostics, Resource Mech. Mater. Struct., 2018, vol. 3, p. 43. https://doi.org/10.17804/2410-9908.2018.3.043-057

    Article  Google Scholar 

  18. Martinsson, Å. and Sandström, R., Hydrogen Depth Profile in Phosphorus-Doped, Oxygen–Free Copper after Cathodic Charging, J. Mater. Sci., 2012, vol. 47(19), pp. 6768–6776. https://doi.org/10.1007/s10853-012-6592-y

    Article  ADS  Google Scholar 

  19. Polyanskiy, V.A., Belyaev, A.K., Alekseeva, E.L., Polyanskiy, A.M., Tretyakov, D.A., and Yakovlev, Yu.A., Phenomenon of Skin Effect in Metals due to Hydrogen Absorption, Continuum Mech. Thermodyn., 2019, vol. 31(6), pp. 1961–1975. https://doi.org/10.1007/s00161-019-00839-2

    Article  ADS  MathSciNet  Google Scholar 

  20. Wu, T.-I. and Wu, J.-Ch., Effects of Cathodic Charging and Subsequent Solution Treating Parameters On The Hydrogen Redistribution And Surface Hardening of Ti–6Al–4V Alloy, J. Alloy. Compnd, 2008, vol. 466(1), pp. 153–159. https://doi.org/10.1016/j.jallcom.2007.11.045

    Article  Google Scholar 

  21. Frolova, K.P., Vilchevskaya, E.N., Polyanskiy, V.A., and Yakovlev, Yu.A., Modeling the Skin Effect Associated with Hydrogen Accumulation by Means of the Micropolar Continuum, Continuum Mech. Thermodyn., 2021, vol. 33(3), pp. 697–711. https://doi.org/10.1007/s00161-020-00948-3

    Article  ADS  MathSciNet  Google Scholar 

  22. Hadam, U. and Zakroczymski, T., Absorption of Hydrogen in Tensile Strained Iron and High-Carbon Steel Studied by Electrochemical Permeation and Desorption Techniques, Int. J. Hydrogen Energy, 2009, vol. 34(5), pp. 2449–2459. https://doi.org/10.1016/j.ijhydene.2008.12.088

    Article  Google Scholar 

  23. Omura, T., Nakamura, J., Hirata, H., Jotoku, K., Ueyama, M., Osuki, T., and Terunuma, M., Effect of Surface Hydrogen Concentration on Hydrogen Embrittlement Properties of Stainless Steels and Ni Based Alloys, ISIJ Int., 2016, vol. 56(3), pp. 405–412. https://doi.org/10.2355/isijinternational.ISIJINT-2015-268

    Article  Google Scholar 

  24. Djukic, M.B., Bakic, G.M., Zeravcic, V.S., Sedmak, A., and Rajicic, B., The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion, Eng. Fract. Mech., 2019, vol. 216, p. 106528. https://doi.org/10.1016/j.engfracmech.2019.106528

    Article  Google Scholar 

  25. Lynch, S., Hydrogen Embrittlement Phenomena and Mechanisms, Corrosion Rev., 2012, vol. 30(3-4), pp. 105–123. https://doi.org/10.1515/corrrev-2012-0502

    Article  Google Scholar 

  26. Oriani, R.A., A Mechanistic Theory of Hydrogen Embrittlement of Steels, Berichte der Bunsengesellschaft für physikalische Chem., 1972, vol. 76(8), pp. 848–857. https://doi.org/10.1002/bbpc.19720760864

    Article  Google Scholar 

  27. Birnbaum, H.K. and Sofronis, P., Hydrogen-Enhanced Localized Plasticity—Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1994, vol. 176(1), pp. 191–202. https://doi.org/10.1016/0921-5093(94)90975-X

    Article  Google Scholar 

  28. Sofronis, P. and Birnbaum, H.K., Mechanics of the Hydrogen-Dislocation-Impurity Interactions—I. Increasing Shear Modulus, J. Mech. Phys. Solids, 1995, vol. 43(1), pp. 49–90. https://doi.org/10.1016/0022-5096(94)00056-B

    Article  ADS  Google Scholar 

  29. Beachem, C.D., A New Model for Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”), Metall. Mater. Trans. B, 1972, vol. 3(2), pp. 441–455. https://doi.org/10.1007/BF02642048

    Article  ADS  Google Scholar 

  30. Bond, G.M., Robertson, I.M., and Birnbaum, H.K., The Influence of Hydrogen on Deformation and Fracture Processes in High-Strength Aluminum Alloys, Acta Metall., 1987, vol. 35(9), pp. 2289–2296. https://doi.org/10.1016/0001-6160(87)90076-9

    Article  Google Scholar 

  31. Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K., Hydrogen Effects on the Interaction between Dislocations, Acta Mater., 1998, vol. 46(5), pp. 1749–1757. https://doi.org/10.1016/S1359-6454(97)00349-2

    Article  ADS  Google Scholar 

  32. Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K., Hydrogen Effects on the Character of Dislocations in High-Purity Aluminum, Acta Mater., 1999, vol. 47(10), pp. 2991–2998. https://doi.org/10.1016/S1359-6454(99)00156-1

    Article  ADS  Google Scholar 

  33. Li, Y., Gong, B., Li, X., Deng, C., and Wang, D., Specimen Thickness Effect on the Property of Hydrogen Embrittlement in Single Edge Notch Tension Testing of High Strength Pipeline Steel, Int. J. Hydrogen Energy, 2018, vol. 43(32), pp. 15575–15585. https://doi.org/10.1016/j.ijhydene.2018.06.118

    Article  Google Scholar 

  34. Robertson, I.M. and Birnbaum, H.K., An HVEM Study of Hydrogen Effects on the Deformation and Fracture of Nickel, Acta Metall., 1986, vol. 34(3), pp. 353–366. https://doi.org/10.1016/0001-6160(86)90071-4

    Article  Google Scholar 

  35. Robertson, I.M., Birnbaum, H.K., Heubaum, F., Tabata, T., and Wei, W., Hydrogen Embrittlement and Grain Boundary Fracture, Scripta Metall., 1984, vol. 18(8), p. 8.

    Google Scholar 

  36. Gerberich, W., Мodeling Hydrogen Induced Damage Mechanisms in Metals, in Metals and Surface Engineering. V. 1. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Gangloff, R.P. and Somerday, B.P., Eds., Woodhead Publ., 2012, pp. 209–246. https://doi.org/10.1533/9780857095374.2.209

  37. Martin, M.L., Dadfarnia, M., Nagao, A., Wang, Sh., and Sofronis, P., Enumeration of the Hydrogen-Enhanced Localized Plasticity Mechanism for Hydrogen Embrittlement in Structural Materials, Acta Mater., 2019, vol. 165, pp. 734–750. https://doi.org/10.1016/j.actamat.2018.12.014

    Article  ADS  Google Scholar 

  38. Djukic, M.B., Sijacki Zeravcic, V., Bakic, G., Sedmak, A., and Rajicic, B., Hydrogen Embrittlement of Low Carbon Structural Steel, Proc. Mater. Sci., 2014, vol. 3, pp. 1167–1172. https://doi.org/10.1016/j.mspro.2014.06.190

    Article  Google Scholar 

  39. Gerberich, W.W., Stauffer, D.D., and Sofronis, P., A Coexistent View of Hydrogen Effects on Mechanical Behavior of Crystals: HELP and HEDE, in Effects of Hydrogen on Materials, Materials Park, OH: ASM Int., 2009, pp. 38–45.

  40. Singh, R., Singh, V., Arora, A., and Mahajan, D.K., In-situ Investigations of Hydrogen Influenced Crack Initiation and Propagation under Tensile and Low Cycle Fatigue Loadings in RPV Steel, J. Nucl. Mater., 2020, vol. 529, p. 151912.

    Article  Google Scholar 

  41. Wasim, M., Djukic, M.B., and Ngo, T.D., Influence of Hydrogen-Enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel, Eng. Failure Analysis, 2021, vol. 123, p. 105312. https://doi.org/10.1016/j.engfailanal.2021.105312

    Article  Google Scholar 

  42. Falkenberg, R., Brocks, W., Dietzel, W., and Scheider, I., Modelling the Effect of Hydrogen on Ductile Tearing Resistance of Steels, Int. J. Mater. Res., 2010, vol. 101(8), pp. 989–996. https://doi.org/10.3139/146.110368

    Article  Google Scholar 

  43. Sobotka, J.C., Dodds, R.H., and Sofronis, P., Effects of Hydrogen on Steady, Ductile Crack Growth: Computational Studies, Int. J. Solids Struct., 2009, vol. 46(22), pp. 4095–4106. https://doi.org/10.1016/j.ijsolstr.2009.08.002

    Article  Google Scholar 

  44. Sofronis, P., Liang, Y., and Aravas, N., Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys, Eur. J. Mech. A. Solids, 2001, vol. 20(6), pp. 857–872. https://doi.org/10.1016/S0997-7538(01)01179-2

    Article  Google Scholar 

  45. Liang, Y., Ahn, D.C., Sofronis, P., Dodds, R.H., and Bammann, D., Effect of Hydrogen Trapping on Void Growth and Coalescence in Metals and Alloys, Mech. Mater., 2008, vol. 40(3), pp. 115–132. https://doi.org/10.1016/j.mechmat.2007.07.001

    Article  Google Scholar 

  46. Liang, Y. and Sofronis, P., Toward a Phenomenological Description of Hydrogen-Induced Decohesion at Particle/Matrix Interfaces, J. Mech. Phys. Solids, 2003, vol. 51(8), pp. 1509–1531. https://doi.org/10.1016/S0022-5096(03)00052-8

    Article  ADS  Google Scholar 

  47. Liang, Y. and Sofronis, P., On Hydrogen-Induced Void Nucleation and Grain Boundary Decohesion in Nickel-Base Alloys, J. Eng. Mater. Technol., 2004, vol. 126(4), pp. 368–377. https://doi.org/10.1115/1.1789954

    Article  Google Scholar 

  48. Jemblie, L., Olden, V., Maincon, P., and Akselsen, O.M., Cohesive Zone Modelling of Hydrogen Induced Cracking on the Interface of Clad Steel Pipes, Int. J. Hydrogen Energy, 2017, vol. 42(47), pp. 28622–28634. https://doi.org/10.1016/j.ijhydene.2017.09.051

    Article  Google Scholar 

  49. Vergani, L., Gobbi, G., and Colombo, Ch., A Numerical Model to Study the Hydrogen Embrittlement Effect on Low-Alloy Steels, Key Eng. Mater., 2014, vol. 577, pp. 513–516. https://doi.org/10.4028/www.scientific.net/KEM.577-578.513

    Article  Google Scholar 

  50. Shewmon, P., Diffusion in Solids, Springer, 2016.

  51. Gorsky, W.S., Theorie der elastischen Nachwirkung in ungeordneten Mischkristallen (elastische Nachwirkung zweiter Art), Physikalische Zeitschrift der Sowjetunion, 1935, vol. 8, pp. 457–471.

    Google Scholar 

  52. Serebrinsky, S., Carter, E.A., and Ortiz, M., A Quantum-Mechanically Informed Continuum Model of Hydrogen Embrittlement, J. Mech. Phys. Solids, 2004, vol. 52(10), pp. 2403–2430. https://doi.org/10.1016/j.jmps.2004.02.010

    Article  ADS  Google Scholar 

  53. McLean, D., Grain Boundaries in Metals, Clarendon Press, 1957.

  54. Hirth, J.P., Effects of Hydrogen on the Properties of Iron and Steel, Met. Trans. A, 1980, vol. 11(6), pp. 861–890. https://doi.org/10.1007/BF02654700

    Article  Google Scholar 

  55. Wilkins, M.L., Calculation of Elastic-Plastic Flow: Technical Report, California Univ. Livermore Radiation Lab., 1963.

  56. Wilkins, M.L., Computer Simulation of Dynamic Phenomena, Berlin: Springer-Verlag, 1999.

  57. Tvergaard, V. and Hutchinson, J.W., The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids, J. Mech. Phys. Solids, 1992, vol. 40(6), pp. 1377–1397. https://doi.org/10.1016/0022-5096(92)90020-3

    Article  ADS  Google Scholar 

  58. Bessonov, N.M., Golovashchenko, S.F., and Volpert, V.A., Numerical Modelling of Contact Elastic-Plastic Flows, Math. Model. Nat. Phenomen., 2009, vol. 4(1), pp. 44–87. https://doi.org/10.1051/mmnp/20094103

    Article  Google Scholar 

  59. Golovashchenko, S.F., Bessonov, N.M., and Ilinich, A.M., Two-Step Method of Forming Complex Shapes from Sheet Metal, J. Mater. Proc. Technol., 2011, vol. 211(5), pp. 875–885. https://doi.org/10.1016/j.jmatprotec.2010.01.004

    Article  Google Scholar 

  60. Polyanskiy, V.A., Belyaev, A.K., Chevrychkina, A.A., Varshavchik, E.A., and Yakovlev, Yu.A., Impact of Skin Effect of Hydrogen Charging on the Choo-Lee Plot for Cylindrical Samples, Int. J. Hydrogen Energy, 2021, vol. 46(9), pp. 6979–6991. https://doi.org/10.1016/j.ijhydene.2020.11.192

    Article  Google Scholar 

  61. Hui, W., Xu, Zh., Zhang, Yo., Zhao, X., Shao, Ch., and Weng, Yu., Hydrogen Embrittlement Behavior of High Strength Rail Steels: A Comparison between Pearlitic and Bainitic Microstructures, Mater. Sci. Eng. A, 2017, vol. 704, pp. 199–206. https://doi.org/10.1016/j.msea.2017.08.022

    Article  Google Scholar 

  62. Lin, Yu-Ch., Chen, D., Chiang, M.H., Cheng, G.-J., Lin, H.-Ch., and Yen, H.W., Response of Hydrogen Desorption and Hydrogen Embrittlement to Precipitation of Nanometer-Sized Copper in Tempered Martensitic Low-Carbon Steel, JOM, 2019, vol. 71(4), pp. 1349–1356. https://doi.org/10.1007/s11837-019-03330-0

    Article  Google Scholar 

  63. Peral, L.B., Zafra, A., Fernandez-Pariente, I., Rodriguez, C., and Belzunce, J., Effect of Internal Hydrogen on the Tensile Properties of Different CrMo(V) Steel Grades: Influence of Vanadium Addition on Hydrogen Trapping and Diffusion, Int. J. Hydrogen Energy, 2020, vol. 45(41), pp. 22054–22079. https://doi.org/10.1016/j.ijhydene.2020.05.228

    Article  Google Scholar 

  64. Shibata, A., Madi, Y., Okada, K., Tsuji, N., and Besson, J., Mechanical and Microstructural Analysis on Hydrogen-Related Fracture in a Martensitic Steel, Int. J. Hydrogen Energy, 2019, vol. 44(54), pp. 29034–29046. https://doi.org/10.1016/j.ijhydene.2019.09.097

    Article  Google Scholar 

  65. Wang, M., Akiyama, E., and Tsuzaki, K., Effect of Hydrogen and Stress Concentration on the Notch Tensile Strength of AISI 4135 Steel, Mater. Sci. Eng. A, 2005, vol. 398(1), pp. 37–46. https://doi.org/10.1016/j.msea.2005.03.008

    Article  Google Scholar 

  66. Oriani, R.A., The Diffusion and Trapping of Hydrogen In Steel, Acta Metall., 1970, vol. 18(1), pp. 147–157. https://doi.org/10.1016/0001-6160(70)90078-7

    Article  Google Scholar 

  67. Asadipoor, M., Kadkhodapour, J., Pourkamali Anaraki, A., Sharifi, S.M.H., Darabi, A.Ch., and Barnoush, A., Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel, Met. Mater. Int., 2021, vol. 27, pp. 2276–2291. https://doi.org/10.1007/s12540-020-00681-1

    Article  Google Scholar 

  68. Bal, B., Okdem, B., Bayram, F.C., and Aydin, M., A Detailed Investigation of the Effect of Hydrogen on the Mechanical Response and Microstructure of Al 7075 Alloy under Medium Strain Rate Impact Loading, Int. J. Hydrogen Energy, 2020, vol. 45(46), pp. 25509–25522. https://doi.org/10.1016/j.ijhydene.2020.06.241

    Article  Google Scholar 

  69. Singh, R., Singh, A., Singh, P.K., and Mahajan, D.K., Role of Prior Austenite Grain Boundaries in Short Fatigue Crack Growth in Hydrogen Charged RPV Steel, Int. J. Pressure Vessels Piping, 2019, vol. 171, pp. 242–252. https://doi.org/10.1016/j.jnucmat.2019.151912

    Article  Google Scholar 

  70. Toribio, J., HELP versus HEDE in Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo, Eng. Failure Analysis, 2018, vol. 94, pp. 157–164. https://doi.org/10.1016/j.engfailanal.2018.07.026

    Article  Google Scholar 

  71. Venezuela, J., Hill, T., Zhou, Q., Li, H., Shi, Zh., Dong, F., Knibbe, R., Zhang, M., Dargusch, M.S., and Atrens, A., Hydrogen-Induced Fast Fracture in Notched 1500 and 1700 MPa Class Automotive Martensitic Advanced High-Strength Steel, Corrosion Sci., 2021, vol. 188, p. 109550. https://doi.org/10.1016/j.corsci.2021.109550

    Article  Google Scholar 

  72. Birnbaum, H.K., Hydrogen Effects on Deformation and Fracture: Science and Sociology, MRS Bullet., 2003, vol. 28(7), pp. 479–485. https://doi.org/10.1557/mrs2003.143

    Article  Google Scholar 

  73. Martin, M.L., Fenske, J.A., Liu, G.S., Sofronis, P., and Robertson, I.M., On the Formation and Nature of Quasi-Cleavage Fracture Surfaces on Hydrogen Embrittled Steels, Acta Mater., 2011, vol. 59(4), pp. 1601–1606. https://doi.org/10.1016/j.actamat.2010.11.024

    Article  ADS  Google Scholar 

  74. Singh, D.K., Maiti, S.K., Bhandakkar, T.K., and Singh Raman, R.K., Efficient Approach for Cohesive Zone Based Three-Dimensional Analysis of Hydrogen-Assisted Cracking of a Circumferentially Notched Round Tensile Specimen, Int. J. Hydrogen Energy, 2017, vol. 42(24), pp. 15943–15955. https://doi.org/10.1016/j.ijhydene.2017.05.064

    Article  Google Scholar 

  75. Elmukashfi, E., Tarleton, E., and Cocks, A.C.F., A Modelling Framework for Coupled Hydrogen Diffusion and Mechanical Behaviour of Engineering Components, Comput. Mech., 2020, vol. 66, pp. 189–220. https://doi.org/10.1007/s00466-020-01847-9

    Article  MathSciNet  Google Scholar 

  76. Huang, C. and Gao, X., Phase Field Modeling of Hydrogen Embrittlement, Int. J. Hydrogen Energy, 2020, vol. 45(38), pp. 20053–20068. https://doi.org/10.1016/j.ijhydene.2020.05.015

    Article  Google Scholar 

  77. Djukic, M.B., Sijacki Zeravcic, V., Bakic, G.M., Sedmak, A., and Rajicic, B., Hydrogen Damage of Steels: A Case Study and Hydrogen Embrittlement Model, Eng. Failure Analysis, 2015, vol. 58, pp. 485–498.

    Article  Google Scholar 

  78. Djukic, M.B., Bakic, G.M., Zeravcic, V.S., Sedmak, A., and Rajicic, B., Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models, Corrosion, 2016, vol. 72(7), pp. 943–961. https://doi.org/10.5006/1958

    Article  Google Scholar 

  79. Wasim, M. and Djukic, M.B., Hydrogen Embrittlement of Low Carbon Structural Steel at Macro-, Micro- and Nano-Levels, Int. J. Hydrogen Energy, 2020, vol. 45(3), pp. 2145–2156. https://doi.org/10.1016/j.ijhydene.2019.11.070

    Article  Google Scholar 

  80. Taha, A. and Sofronis, P., A Micromechanics Approach to the Study of Hydrogen Transport and Embrittlement, Eng. Fract. Mech., 2001, vol. 68(6), pp. 803–837. https://doi.org/10.1016/S0013-7944(00)00126-0

    Article  Google Scholar 

Download references

Funding

The work was performed at the Institute for Problems in Mechanical Engineering (IPME RAS) and is supported solely by the Russian Science Foundation (Grant No. 18-19-00160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Polyanskiy.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 98–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyanskiy, V.A., Belyaev, A.K., Sedova, Y.S. et al. Mesoeffect of the Dual Mechanism of Hydrogen-Induced Cracking. Phys Mesomech 25, 466–478 (2022). https://doi.org/10.1134/S1029959922050095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050095

Keywords:

Navigation