Skip to main content
Log in

Microstructural Effect on Hydrogen Embrittlement of High Nitrogen Chromium-Manganese Steel

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The effect of the density of grain boundaries (austenite/austenite) and phase boundaries (austenite/particle) on hydrogen embrittlement was studied in high nitrogen austenitic steel Fe-19Cr-21Mn-1.3V-0.2С-0.8N (mass %). Experiments revealed that the microscopic structural parameters such as lattice distortions, phase and grain boundaries affect the macromechanical behavior of the hydrogen-charged steel. With increasing density of grain and phase boundaries and decreasing lattice distortion of the austenitic phase, hydrogen atoms absorbed during electrolytic hydrogen charging are redistributed from interstitial positions in austenitic grains to the boundaries. This leads to a decrease in hydrogen-assisted solid solution strengthening of austenite, reduces the hydrogen-induced increase in the steel yield stress, and suppresses transgranular but promotes intergranular fracture of the hydrogen-affected layer in the tensile specimens. It was experimentally shown that an increase in the grain boundary density only, with other structural parameters unchanged, slightly improves the resistance of steel to the negative effects of hydrogen, while an increase in the total density of grain and phase boundaries has the opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Johnson, W.H., On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids, Proc. R. Soc. Lond., 1874, vol. 23, pp. 168–179. https://doi.org/10.1098/rspl.1874.0024

    Article  Google Scholar 

  2. Lynch, S., Hydrogen Embrittlement Phenomena and Mechanisms, Corrosion Rev., 2003, vol. 30, pp. 105–123. https://doi.org/10.1515/corrrev-2012-0502

    Article  Google Scholar 

  3. Barrera, O., BomHNAS, D., Chen, Y., Daff, T.D., Galindo-Nava, E., Gong, P., Haley, D., Horton, R., Katzarov, I., Kermode, J.R., Liverani, C., Stopher, M., and Sweeney, F., Understanding and Mitigating Hydrogen Embrittlement of Steels: A Review of Experimental, Modelling and Design Progress from Atomistic to Continuum, J. Mater. Sci., 2018, vol. 53, pp. 6251–6290. https://doi.org/10.1007/s10853-017-1978-5

    Article  ADS  Google Scholar 

  4. Rozenak, P. and Bergman, R., X-Ray Phase Analysis of Martensitic Transformations in Austenitic Stainless Steels Electrochemically Charged with Hydrogen, Mater. Sci. Eng. A, 2006, vol. 437, pp. 366–378. https://doi.org/10.1016/j.msea.2006.07.140

    Article  Google Scholar 

  5. Koyama, M., Akiyama, E., Sawaguchi, T., Ogawa, K., Kireeva, I.V., Chumlyakov, Y.I., and Tsuzaki, K., Hydrogen-Assisted Quasi-Cleavage Fracture in a Single Crystalline Type 316 Austenitic Stainless Steel, Corrosion Sci., 2013, vol. 75, pp. 345–353. https://doi.org/10.1016/j.corsci.2013.06.018

    Article  Google Scholar 

  6. Han, G., He, J., Fukuyama, S., and Yokogawa, K., Effect of Strain-Induced Martensite on Hydrogen Environment Embrittlement of Sensitized Austenitic Stainless Steels at Low Temperatures, Acta Mater., 1998, vol. 46, no. 13, pp. 4559–4570. https://doi.org/10.1016/S1359-6454(98)00136-0

    Article  ADS  Google Scholar 

  7. Eliezer, D., Chakrapani, D.G., Altstetter, C.J., and Pugh, E.N., The Influence of Austenite Stability on the Hydrogen Embrittlement and Stress-Corrosion Cracking of Stainless Steel, Metall. Trans. A, 1979, vol. 10, pp. 935–941. https://doi.org/10.1007/BF02658313

    Article  Google Scholar 

  8. Lo, K.H., Shek, C.H., and Lai, J.K.L., Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, vol. 65, no. 4–6, pp. 39–104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  Google Scholar 

  9. Bhadeshia, H.K.D.H., Prevention of Hydrogen Embrittlement in Steels, ISIJ Int., 2016, vol. 56, no. 1, pp. 24–36. https://doi.org/10.2355/isijinternational.ISIJINT-2015-430

    Article  Google Scholar 

  10. Nagumo, M., Fundamentals of Hydrogen Embrittlement, Singapore: Springer Science + Business Media, 2016. https://doi.org/10.1007/978-981-10-0161-1

  11. Astafurova, E.G., Melnikov, E.V., Astafurov, S.V., Ratochka, I.V., Mishin, I.P., Maier, G.G., Moskvina, V.A., Zakharov, G.N., Smirnov, A.I., and Bataev, V.A., Hydrogen Embrittlement Effects on Austenitic Stainless Steels with Ultrafine-Grained Structure of Different Morphology, Phys. Mesomech., 2019, vol. 22, no. 4, pp. 313–326. https://doi.org/10.1134/S1029959919040076

    Article  Google Scholar 

  12. Zan, N., Ding, H., Guo, X., Tang, Z., and Bleck, W., Effects of Grain Size on Hydrogen Embrittlement in a Fe-22Mn-0.6C TWIP Steel, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 10687–10696. https://doi.org/10.1016/j.ijhydene.2015.06.112

    Article  Google Scholar 

  13. Bai, Y., Momotani, Y., Chen, M.C., Shibata, A., and Tsuji, N., Effect of Grain Refinement on Hydrogen Embrittlement Behaviors of High-Mn TWIP Steel, Mater. Sci. Eng. A, 2016, vol. 65, pp. 935–944. https://doi.org/10.1557/jmr.2017.351

    Article  Google Scholar 

  14. Macadre, A., Tsuchiyama, T., and Takaki, S., Control of Hydrogen-Induced Failure in Metastable Austenite by Grain Size Refinement, Materialia, 2019, vol. 8, p. 100514. https://doi.org/10.1016/j.mtla.2019.100514

    Article  Google Scholar 

  15. Panchenko, M.Yu., Melnikov, E.V., Mikhno, A.S., Maier, G.G., Astafurov, S.V., Moskvina, V.A., Reunova, K.A., Galchenko, N.K., and Astafurova, E.G., The Influence of Intergranular and Interphase Boundaries and δ-Ferrite Volume Fraction on Hydrogen Embrittlement of High-Nitrogen Steel, Int. J. Hydrogen Energy, 2021, vol. 46, no. 59, pp. 30510–30522. https://doi.org/10.1016/j.ijhydene.2021.06.183

    Article  Google Scholar 

  16. Ovejero-Garcia, J., Hydrogen Microprint Technique in the Study of Hydrogen in Steels, J. Mater. Sci. P, 1985, vol. 20, pp. 2623–2629. https://doi.org/10.1007/BF00556094

    Article  ADS  Google Scholar 

  17. Mohtadi-Bonab, M.A., Szpunar, J.A., and Razavi-Tousi, S.S., A Comparative Study of Hydrogen Induced Cracking Behavior in API 5L X60 and X70 Pipeline Steels, Eng. Failure Analysis, 2013, vol. 33, pp. 163–174. https://doi.org/10.1016/j.engfailanal.2013.04.028

    Article  Google Scholar 

  18. Pu, S.D. and Ooi, S.W., Hydrogen Transport by Dislocation Movement in Austenitic Steel, Mater. Sci. Eng. A, 2019, vol. 761, p. 138059. https://doi.org/10.6052/1000-0879-22-136

    Article  Google Scholar 

  19. Pu, S.D., Turk, A., Lenka, S., and Ooi, S.W., Study of Hydrogen Release Resulting from the Transformation of Austenite into Martensite, Mater. Sci. Eng. A, 2019, vol. 754, pp. 628–635. https://doi.org/10.1016/j.msea.2019.03.098

    Article  Google Scholar 

  20. Ma, Z., Xiong, X., and Su, Y., Study on Hydrogen Segregation at Individual Grain Boundaries in Pure Nickel by Scanning Kelvin Probe Force Microscopy, Mater. Lett., 2021, vol. 303, p. 130528. https://doi.org/10.1016/j.matlet.2021.130528

    Article  Google Scholar 

  21. Mai, H.L., Cui, X.Y., Scheiber, D., Romaner, L., and Ringer, S.P., An Understanding of Hydrogen Embrittlement in Nickel Grain Boundaries from First Principles, Mater. Design, 2021, vol. 212, p. 110283. https://doi.org/10.1016/j.matdes.2021.110283

    Article  Google Scholar 

  22. Novik, F.S., Mathematical Methods for Designing Metallurgical Experiments, Part 2, Moscow: MISIS, 1979.

  23. Naidu, S.V.N. and Singh, T., X-Ray Characterisation of Eroded 316 Stainless Steel, Wear, 1993, vol. 166, pp. 141–145. https://doi.org/10.1016/0043-1648(93)90255-K

    Article  Google Scholar 

  24. Saltykov, S.A., Stereometric Metallography, Arlington, Va.: Armed Services Technical Information Agency, 1972.

  25. Uggowitzer, P.J. and Harzenmoser, M., Strengthening of Austenite Stainless Steels by Nitrogen, in Proc. HNS 88, London: Institute of Metals, 1989, pp. 174–179. https://doi.org/10.1007/BF03220991

  26. Panchenko, M.Y., Maier, G.G., Tumbusova, I.A., Astafurov, S.V., Melnikov, E.V., Moskvina, V.A., Burlachenko, A.G., Mirovoy, Y.A., Mironov, Y.P., Galchenko, N.K., and Astafurova, E.G., The Effect of Age-Hardening Mechanism on Hydrogen Embrittlement in High-Nitrogen Steels, Int. J. Hydrogen Energy, 2019, vol. 44, no. 36, pp. 20529–20544. https://doi.org/10.1016/j.ijhydene.2019.05.240

    Article  Google Scholar 

  27. Astafurov, S.V., Maier, G.G., Tumbusova, I.A., Melnikov, E.V., Moskvina, V.A., Panchenko, M.Yu., Smirnov, A.I., Galchenko, N.K., and Astafurova, E.G., The Effect of Solid-Solution Temperature on Phase Composition, Tensile Characteristics and Fracture Mechanism of V-Ccontaining CrMn-Steels with High Interstitial Content C + N > 1 mass %, Mater. Sci. Eng. A, 2020, vol. 770, p. 138534. https://doi.org/10.1016/j.msea.2019.138534

    Article  Google Scholar 

  28. Bannych, O.A., Blinov, V.M., Poimenov, I.L., and Kunavin, S.A., Effect of Vanadium on the Structure and Mechanical Properties of Nonmagnetic High-Nitrogen Steels, Met. Sci. Heat Treat., 1982, vol. 24, no. 5, pp. 335–337. https://doi.org/10.1007/BF00782806

    Article  ADS  Google Scholar 

  29. Ashby, M.F., Work Hardening of Dispersion-Hardened Crystals, Philos. Mag., 1966, vol. 14, no. 132, pp. 1157–1178. https://doi.org/10.1080/14786436608224282

    Article  ADS  Google Scholar 

  30. Gladman, T., Precipitation Hardening in Metals, Mater. Sci. Technol., 1999, vol. 15, no. 1, pp. 30–36. https://doi.org/10.1179/026708399773002782

    Article  Google Scholar 

  31. Petch, N.J., The Cleavage Strength of Polycrystals, J. Iron. Steel. Inst., 1953, vol. 174, pp. 25–28. https://doi.org/10.1016/0013-7944(87)90050-6

    Article  Google Scholar 

  32. Hall, E.O., The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B, 1951, vol. 64, pp. 747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  ADS  Google Scholar 

  33. Ulmer, D.G. and Altstetter, C.J., Phase Relations in the Hydrogen-Austenite System, Acta Metall. Mater., 1993, vol. 41, pp. 2235–2241. https://doi.org/10.1016/0956-7151(93)90393-7

    Article  Google Scholar 

  34. Brass, M. and Chêne, J., Hydrogen Uptake in 316L Stainless Steel: Consequences on the Tensile Properties, Corrosion Sci., 2006, vol. 48, no. 10, pp. 3222–3242. https://doi.org/10.1016/j.corsci.2005.11.004

    Article  Google Scholar 

  35. Macadre, A., Nakada, N., Tsuchiyama, T., and Takaki, S., Critical Grain Size to Limit the Hydrogen-Induced Ductility Drop in a Metastable Austenitic Steel, Int. J. Hydrogen Energy, 2015, vol. 40, no. 33, pp. 10697–10703. https://doi.org/10.1016/j.ijhydene.2015.06.111

    Article  Google Scholar 

  36. Robertson, I.M., Birnbaum, H.K., and Sofronis, P., Hydrogen Effects on Plasticity: Chapter 91, in Dislocations in Solids, Amsterdam: Elsevier, 2008, vol. 15, pp. 249–293. https://doi.org/10.1016/S1572-4859(09)01504-6

  37. Birnbaum, H.K., Hydrogen Effects on Deformation Relation between Dislocation Behavior and the Macroscopic Stress–Strain Behavior, Scripta Metall. Mater., 1994, vol. 31, pp. 149–153. https://doi.org/10.1016/0956-716X(94)90166-X

    Article  Google Scholar 

  38. Oriani, R.A., Hirth, J.P., and Smialowski, M., Hydrogen Degradation of Ferrous Alloys, Park Ridge, USA: Noyes Publications, 1985. https://doi.org/10.1557/S0883769400069670

  39. Oudriss, A., Creus, J., Bouhattate, J., Conforto, E., Berziou, C., Savall, C., and Feaugas, X., Grain Size and Grain-Boundary Effects on Diffusion and Trapping of Hydrogen in Pure Nickel, Acta Mater., 2012, vol. 60, pp. 6814–6828. https://doi.org/10.1016/j.actamat.2012.09.004

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Phys.-Math. Sci. N.K. Galchenko, E.V. Melnikov, Cand. Phys.-Math. Sci. S.V. Astafurov, K.A. Reunova, and V.A. Moskvina for help in preparing materials and conducting experimental studies.

Funding

The study was funded by the Russian Foundation for Basic Research, project number 20-38-90129, and was performed according to the government statement of work for ISPMS SB RAS, research line FWRW-2022-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Astafurova.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 84–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, M.Y., Nifontov, A.S. & Astafurova, E.G. Microstructural Effect on Hydrogen Embrittlement of High Nitrogen Chromium-Manganese Steel. Phys Mesomech 25, 453–465 (2022). https://doi.org/10.1134/S1029959922050083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050083

Keywords:

Navigation