Skip to main content
Log in

Positron Annihilation in a Composite Based on Magnesium Hydride and Carbon Nanotubes during Dehydrogenation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper presents the results of experimental research on the annihilation of positrons in hydrogen storage materials based on magnesium and single-wall carbon nanotubes during thermal annealing. It is shown that the characteristics of positron annihilation in such materials are related to their microstructural changes. In a composite based on magnesium hydride and carbon nanotubes, the rate of hydrogen release during dehydrogenation reveals three peaks due to the specific morphology of carbon nanotubes included in the magnesium matrix. During dehydrogenation, the composite undergoes irreversible changes in its electronic and/or defect structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhang, X., Liu, Y., Ren, Z., Zhang, X., Hu, J., Huang, Z., Lu, Y., Gao, M., and Pan, H., Realizing 6.7 wt % Reversible Storage of Hydrogen at Ambient Temperature with Non-Confined Ultrafine Magnesium Hydrides, Energy Environ. Sci., 2020, vol. 14, no. 4, pp. 2302–2313. https://doi.org/10.1039/D0EE03160G

    Article  Google Scholar 

  2. Wen, J., de Rango, P., Allain, N., Laversenne, L., and Grosdidier, T., Improving Hydrogen Storage Performance of Mg-Based Alloy through Microstructure Optimization, J. Power Sources, 2020, vol. 480, article 228823. https://doi.org/10.1016/j.jpowsour.2020.228823

  3. Sun, Y., Shen, C., Lai, Q., Liu, W., Wang, D. W., and Aguey-Zinsou, K.F., Tailoring Magnesium Based Materials for Hydrogen Storage through Synthesis: Current State of the Art, Energy Storage Mater., 2018, vol. 10, pp. 168–198. https://doi.org/10.1016/j.ensm.2017.01.010

    Article  Google Scholar 

  4. Liu, Y., Zou, J., Zeng, X., and Ding, W., Study on Hydrogen Storage Properties of Mg–X (X = Fe, Co, V) Nano-Composites Co-Precipitated from Solution, RSC Adv., 2015, vol. 5, no. 10, pp. 7687–7696. https://doi.org/10.1039/C4RA12977F

  5. Shao, H., Wang, Y., Xu, H., and Li, X., Preparation and Hydrogen Storage Properties of Nanostructured Mg2Cu Alloy, J. Solid State Chem., 2005, vol. 178, no. 7, pp. 2211–2217. https://doi.org/10.1016/j.jssc.2005.04.036

    Article  ADS  Google Scholar 

  6. Hanada, N., Ichikawa, T., and Fujii, H., Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling, J. Phys. Chem. B, 2005, vol. 109, no. 15, pp. 7188–7194. https://doi.org/10.1021/jp044576c

    Article  Google Scholar 

  7. Cho, E.S., Ruminski, A.M., Liu, Y.S., Shea, P.T., Kang, S., Zaia, E.W., Park, J.Y., Chuang, Y.D., Yuk, J.M., Zhou, X., Heo, T.W., Guo, J., Wood, B.C., and Urban, J.J., Hierarchically Controlled Inside-Out Doping of Mg Nanocomposites for Moderate Temperature Hydrogen Storage, Adv. Function. Mater., 2017, vol. 27, no. 47, article 1704316. https://doi.org/10.1002/adfm.201704316

  8. Shao, H., Asano, K., Enoki, H., and Akiba, E., Preparation and Hydrogen Storage Properties of Nanostructured Mg–Ni BCC Alloys, J. Alloy. Compd, 2009, vol. 477, no. 1–2, pp. 301–306. https://doi.org/10.1016/j.jallcom.2008.11.004

    Article  Google Scholar 

  9. Wang, Y., Lan, Z., Huang, X., Liu, H., and Guo, J., Study on Catalytic Effect and Mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on Hydrogen Storage Properties of Magnesium, Int. J. Hydrogen Energy, 2019, vol. 44, no. 54, pp. 28863–28873. https://doi.org/10.1016/j.ijhydene.2019.09.110

  10. Kadri, A. and Yao, X., Enhanced Sorption Performance of MgH2 Doped with Reduced Metal-Organic Framework of Ni-Co-MOF-74, Int. J. Recent Technol. Eng., 2019, vol. 8, no. 1, pp. 3149–3155.

    Google Scholar 

  11. Lototskyy, M., Sibanyoni, J.M., Denys, R.V., Williams, M., Pollet, B.G., and Yartys, V.A., Magnesium–Carbon Hydrogen Storage Hybrid Materials Produced by Reactive Ball Milling in Hydrogen, Carbon, 2013, vol. 57, pp. 146–160. https://doi.org/10.1016/j.carbon.2013.01.058

    Article  Google Scholar 

  12. Wu, C.Z., Wang, P., Yao, X., Liu, C., Chen, D.M., Lu, G.Q., and Cheng, H.M., Effect of Carbon/Noncarbon Addition on Hydrogen Storage Behaviors of Magnesium Hydride, J. Alloy. Compd, 2006, vol. 414, no. 1–2, pp. 259–264. https://doi.org/10.1016/j.jallcom.2005.07.021

    Article  Google Scholar 

  13. Chen, D., Chen, L., Liu, S., Ma, C.X., Chen, D.M., and Wang, L.B., Microstructure and Hydrogen Storage Property of Mg/MWNTs Composites, J. Alloy. Compd, 2004, vol. 372, no. 1–2, pp. 231–237. https://doi.org/10.1016/j.jallcom.2003.08.104

    Article  Google Scholar 

  14. Huang, Z.G., Guo, Z.P., Calka, A., Wexler, D., and Liu, H.K., Effects of Carbon Black, Graphite and Carbon Nanotube Additives on Hydrogen Storage Properties of Magnesium, J. Alloy. Compd, 2007, vol. 427, no. 1–2, pp. 94–100. https://doi.org/10.1016/j.jallcom.2006.03.069

    Article  Google Scholar 

  15. Lueking, A.D., Burgess Clifford, C.E., and Narayanan, D.L., Induced Defects in Carbonaceous Materials for Hydrogen Storage, ACS Div. Fuel Chem. Preprints, 2004, vol. 49, article 843.

  16. Peles, A. and Van de Walle, C.G., Role of Charged Defects and Impurities in Kinetics of Hydrogen Storage Materials: A First-Principles Study, Phys. Rev. B, 2007, vol. 76, no. 21, article 214101. https://doi.org/10.1103/PhysRevB.76.214101

  17. Sarahan, M.C., Ramasse, Q.M., Morgan, D.G., and Browning, N.D., Statistical Analysis of Point Defects in Hydrogen Storage Materials, Micros. Microanal., 2009, vol. 15, no. S2, pp. 462–463. https://doi.org/10.1017/S1431927609095890

    Article  ADS  Google Scholar 

  18. Wert, C.A., Trapping of Hydrogen in Metals, in Hydrogen in Metals II, Berlin: Springer, 1978, pp. 305–330.

  19. Geld, P.V., Ryabov, R.A., and Kodes, E.S., Hydrogen and Imperfections of Metal Structure, Moscow: Metallurgy, 1979.

  20. Čížek, J., Procházka, I., Bečvář, F., Kužel, R., Cieslar, M., Brauer, G., Anwand, W., Kirchleim, R., and Pundt, A., Hydrogen-Induced Defects in Bulk Niobium, Phys. Rev. B, 2004, vol. 69, no. 22, article 224106. https://doi.org/10.1103/PhysRevB.69.224106

  21. Sakaki, K., Yamada, T., Mizuno, M., Araki, H., and Shirai, Y., Hydrogen-Induced Vacancy Generation Phenomenon in Pure Pd, Mater. Trans., 2002, vol. 43, no. 11, pp. 2652–2655. https://doi.org/10.2320/matertrans.43.2652

    Article  Google Scholar 

  22. Laptev, R.S., Kudiiarov, V.N., Bordulev, Y.S., Mikhaylov, A.A., and Lider, A.M., Gas-Phase Hydrogenation Influence on Defect Behavior in Titanium-Based Hydrogen-Storage Material, Progr. Nat. Sci. Mater. Int., 2017, vol. 27, no. 1, pp. 105–111. https://doi.org/10.1016/j.pnsc.2017.01.001

    Article  Google Scholar 

  23. Kudiyarov, V.N., Elman, R.R., and Kurdyumov, N., The Effect of High-Energy Ball Milling Conditions on Microstructure and Hydrogen Desorption Properties of Magnesium Hydride and Single-Walled Carbon Nanotubes with Iron Nanoparticles, Metals, 2021, vol. 11, no. 9, article 1409. https://doi.org/10.3390/met11091409

  24. Wu, C. and Cheng, H.M., Effects of Carbon on Hydrogen Storage Performances of Hydrides, J. Mater. Chem., 2010, vol. 20, no. 26, pp. 5390–5400. https://doi.org/10.1039/B926880D

    Article  Google Scholar 

  25. Yao, X., Wu, C., Du, A., Lu, G.Q., Cheng, H., Smith, S.C., Zou, J., and He, Y., Mg-Based Nanocomposites with High Capacity and Fast Kinetics for Hydrogen Storage, J. Phys. Chem. B, 2006, vol. 110, no. 24, pp. 11697–11703. https://doi.org/10.1021/jp057526w

    Article  Google Scholar 

  26. Shim, J.H., Park, M., Lee, Y.H., Kim, S., Im, Y.H., Suh, J.Y., and Cho, Y.W., Effective Thermal Conductivity of MgH2 Compacts Containing Expanded Natural Graphite under a Hydrogen Atmosphere, Int. J. Hydrogen Energy, 2014, vol. 39, no. 1, pp. 349–355. https://doi.org/10.1016/j.ijhydene.2013.09.092

    Article  Google Scholar 

  27. Amirkhiz, B.S., Danaie, M., and Mitlin, D., The Influence of SWCNT–Metallic Nanoparticle Mixtures on the Desorption Properties of Milled MgH2 Powders, Nanotechnology, 2009, vol. 20, no. 20, article 204016. https://doi.org/10.1088/0957-4484/20/20/204016

  28. Wu, C., Wang, P., Yao, X., Liu, C., Chen, D., Lu, G.Q., and Cheng, H., Effects of SWNT and Metallic Catalyst on Hydrogen Absorption/Desorption Performance of MgH2, J. Phys. Chem. B, 2005, vol. 109, no. 47, pp. 22217–22221. https://doi.org/10.1021/jp0545041

    Article  Google Scholar 

  29. Pandey, S.K., Singh, R.K., and Srivastava, O.N., Investigations on Hydrogenation Behaviour of CNT Admixed Mg2Ni, Int. J. Hydrogen Energy, 2009, vol. 34, no. 23, pp. 9379–9384. https://doi.org/10.1016/j.ijhydene.2009.09.077

    Article  Google Scholar 

  30. Du, A.J., Smith, S.C., Yao, X.D., He, Y., and Lu, G.Q., Atomic Hydrogen Diffusion in Novel Magnesium Nanostructures: The Impact of Incorporated Subsurface Carbon Atoms, J. Phys. Conf. Ser. IOP Publ., 2006, vol. 29, no. 1, article 032. https://doi.org/10.1088/1742-6596/29/1/032

  31. Ullah Rather, S. and Hwang, S.W., Comparative Hydrogen Uptake Study on Ttanium–MWCNTs Composite Prepared by Two Different Methods, Int. J. Hydrogen Energy, 2016, vol. 41, no. 40, pp. 18114–18120. https://doi.org/10.1016/j.ijhydene.2016.07.194

    Article  Google Scholar 

  32. Wu, C.Z., Wang, P., Yao, X., Liu, C., Chen, D.M., Lu, G.Q., and Cheng, H.M., Hydrogen Storage Properties of MgH2/SWNT Composite Prepared by Ball Milling, J. Alloy. Compd, 2006, vol. 420, no. 1–2, pp. 278–282. https://doi.org/10.1016/j.jallcom.2005.10.028

    Article  Google Scholar 

  33. Campos, R.B.V., Camargo, S.A.D.S., Brum, M.C., and Santos, D.S.D., Hydrogen Uptake Enhancement by the Use of a Magnesium Hydride and Carbon Nanotubes Mixture, Mater. Res., 2017, vol. 20, pp. 85–88. https://doi.org/10.1590/1980-5373-MR-2017-0445

    Article  Google Scholar 

  34. Shen, C. and Aguey-Zinsou, K.F., Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage, Frontiers Energy Res., 2017, vol. 5, article 27. https://doi.org/10.3389/fenrg.2017.00027

  35. Bordulev, I., Laptev, R., Kabanov, D., Ushakov, I., Kudiiarov, V., and Lider, A., Source for In Situ Positron Annihilation Spectroscopy of Thermal and Hydrogen-Induced Defects Based on the Cu-64 Isotope, Materials, 2021, vol. 14, no. 21, article 6693. https://doi.org/10.3390/ma14216693

  36. Anastasopol, A., Eijt, S.W.H., Schut, H., Mulder, F.M., Plazaola, F., and Dam, B., Thermal Stability of MgyTi1–y Thin Films Investigated by Positron Annihilation Spectroscopy, Phys. Proc., 2012, vol. 35, pp. 16–21. https://doi.org/10.1016/j.phpro.2012.06.004

  37. Lillo-Ródenas, M.A., Guo, Z.X., Aguey-Zinsou, K.F., Cazorla-Amorós, D., and Linares-Solano, A., Effects of Different Carbon Materials on MgH2 Decomposition, Carbon, 2008, vol. 46, no. 1, pp. 126–137. https://doi.org/10.1016/j.carbon.2007.10.033

    Article  Google Scholar 

  38. Rahmaninasab, M.A., Raygan, S., Abdizadeh, H., Pourabdoli, M., and Mirghaderi, S.H., Properties of Activated MgH2 + Mischmetal Nanostructured Composite Produced by Ball-Milling, Mater. Renew. Sustain. Energy, 2018, vol. 7, no. 3, pp. 1–11. https://doi.org/10.1007/s40243-018-0122-z

    Article  Google Scholar 

  39. Xiao, X., Liu, Z., Saremi-Yarahmadi, S., and Gregory, D.H., Facile Preparation of β-/γ-MgH2 Nanocomposites under Mild Conditions and Pathways to Rapid Dehydrogenation, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 15, pp. 10492–10498. https://doi.org/10.1039/C5CP07762A

    Article  Google Scholar 

  40. Liu, Y, Wang, S., Li, Z., Gao, M., Liu, Y., Sun, W., and Pan, H., Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid, Processes, 2021, vol. 9, no. 5, article 892. https://doi.org/10.3390/pr9050892

  41. Nachev, S., de Rango, P., Skryabina, N., Skachkov, A., Aptukov, V., Fruchart, D., and Marty, P., Mechanical Behavior of Highly Reactive Nanostructured MgH2, Int. J. Hydrogen Energy, 2015, vol. 40, no. 47, pp. 17065–17074. https://doi.org/10.1016/j.ijhydene.2015.05.022

    Article  Google Scholar 

  42. Nachev, S., de Rango, P., Fruchart, D., Skryabina, N., and Marty, P., Correlation between Microstructural and Mechanical Behavior of Nanostructured MgH2 upon Hydrogen Cycling, J. Alloy. Compd, 2015, vol. 645, pp. S434–S437. https://doi.org/10.1016/j.jallcom.2014.12.088

  43. Lu, X., Zhang, L., Yu, H., Lu, Z., He, J., Zheng, J., Wu, F., and Chen, L., Achieving Superior Hydrogen Storage Properties of MgH2 by the Effect of TiFe and Carbon Nanotubes, Chem. Eng. J., 2021, vol. 422, article 130101. https://doi.org/10.1016/j.cej.2021.130101

  44. Ismail, M., Juahir, N., and Mustafa, N.S., Improved Hydrogen Storage Properties of MgH2 Co-Doped with FeCl3 and Carbon Nanotubes, J. Phys. Chem. C, 2014, vol. 118, no. 33, pp. 18878–18883. https://doi.org/10.1021/jp5046436

    Article  Google Scholar 

  45. Kajiwara, K., Sugime, H., Noda, S., and Hanada, N., Fast and Stable Hydrogen Storage in the Porous Composite of MgH2 with Nb2O5 Catalyst and Carbon Nanotube, J. Alloy. Compd, 2022, vol. 893, article 162206. https://doi.org/10.1016/j.jallcom.2021.162206

Download references

Funding

The work was performed under the Development Program of TPU and supported by the State Assignment “Nauka” (project No. FSWW-2020-0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kudiyarov.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 75–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudiyarov, V.N., Laptev, R.S., Bordulev, Y.S. et al. Positron Annihilation in a Composite Based on Magnesium Hydride and Carbon Nanotubes during Dehydrogenation. Phys Mesomech 25, 445–452 (2022). https://doi.org/10.1134/S1029959922050071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050071

Keywords:

Navigation