Skip to main content
Log in

Diffusion Properties of Hydrogen in B2-TiFe

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The diffusion properties of hydrogen in B2-TiFe alloy were studied in the framework of density functional theory and transition state theory. It was found that the diffusion of hydrogen occurs through atom jump between octahedral positions surrounded by two iron atoms and four titanium atoms. In the case of hydrogen diffusion along the <110> direction with a first-order transition state, the migration barrier was equal to 0.57 eV. A higher barrier of 0.99 eV was obtained along the <100> direction with a second-order transition state. Analytical expressions were derived for the temperature-dependent diffusion coefficient of hydrogen in the alloy using Landman’s method. It was shown that taking into account second-order transition states insignificantly affects the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dematteis, E.M., Berti, N., Cuevas, F., Latroche, M., and Baricco, M., Substitutional Effects in TiFe for Hydrogen Storage: A Comprehensive Review, Mater. Adv., 2021, vol. 2, pp. 2524–2560. https://doi.org/10.1039/D1MA00101A

    Article  Google Scholar 

  2. Reilly, J.J. and Wiswall, R.H., Formation and Properties of Iron Titanium Hydride, Inorg. Chem., 1974, vol. 13, pp. 218–222. https://doi.org/10.1021/ic50131a042

    Article  Google Scholar 

  3. Rusman, N.A.A. and Dahari, M., A Review on the Current Progress of Metal Hydrides Material for Solid-State Hydrogen Storage Applications, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 12108–12126. https://doi.org/10.1016/j.ijhydene.2016.05.244

    Article  Google Scholar 

  4. Murray, J.L., Phase Diagrams of Binary Titanium Alloys, Metals Park, Ohio: ASM International, 1987.

  5. Cacciamani, G., De Keyzer, J., Ferro, R., Klotz, U.E., Lacaze, J., and Wollants, P., Critical Evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti Alloy Systems, Intermetallics, 2006, vol. 14, pp. 1312–1325. https://doi.org/10.1016/j.intermet.2005.11.028

    Article  Google Scholar 

  6. Kondo, T., Shindo, K., Arakawa, M., and Sakurai, Y., Microstructure and Hydrogen Absorption–Desorption Properties of Mg–TiFe0.92Mn0.08 Composites Prepared by Wet Mechanical Milling, J. Alloy. Compd, 2004, vol. 375, pp. 283–291. https://doi.org/10.1016/j.jallcom.2003.11.152

    Article  Google Scholar 

  7. Yamashita, I., Tanaka, H., Takeshita, H., Kuriyama, N., Sakai, T., and Uehara, I., Hydrogenation Characteristics of TiFe1–xPdx (0.05 ≤ x ≤ 0.30) Alloys, J. Alloy. Compd, 1997, vol. 253–254, pp. 238–240. https://doi.org/10.1016/S0925-8388(96)02925-8

  8. Lee, S.M. and Perng, T.P., Correlation of Substitutional Solid Solution with Hydrogenation Properties of TiFe1–xMx (M = Ni, Co, Al) Alloys, J. Alloy. Compd, 1999, vol. 291, pp. 254–261. https://doi.org/10.1016/S0925-8388(99)00262-5

  9. Mitrokhin, S.V., Verbetsky, V.N., Kajumov, R.R., Cunmao, H., and Yufen, Z., Hydrogen Sorption Peculiarities in FeTi-Type Ti–Fe–V–Mn Alloys, J. Alloy. Compd, 2003, vol. 199, pp. 155–160. https://doi.org/10.1016/0925-8388(93)90443-Q

    Article  Google Scholar 

  10. Zadorozhny, M.Yu., Kaloshkin, S.D., Klyamkin, S.N., Bermesheva, O.V., and Zadorozhny, V.Yu., Mechanochemical Synthesis of Nanocrystalline Intermetallic Compound TiFe and Its Mechanical Alloying with a Third Component, Metalloved. Term. Obr. Met., 2012, no. 9, pp. 30–35.

    Google Scholar 

  11. Zadorozhnyy, V.Yu., Klyamkin, S.N., Zadorozhnyy, M.Yu., Bermesheva, O.V., and Kaloshkin, S.D., Mechanical Alloying of Nanocrystalline Intermetallic Compound TiFe Doped by Aluminum and Chromium, J. Alloy. Compd, 2014, vol. 586, pp. S56–S60. https://doi.org/10.1016/j.jallcom.2013.01.138

  12. Singh, B.K., Singh, A.K., and Srivastava, O.N., Improved Hydrogen Sorption Characteristics in FeTi1+xMm Material, Int. J. Hydrogen Energy, 1996, vol. 21, no. 2, pp. 111–117. https://doi.org/10.1016/0360-3199(95)00024-0

  13. Ma, J., Pan, H., Wang, X., Chen, C., and Wang, Q., Hydrogen Storage Properties of FeTi1.3 + x wt % Mm (x = 0.0, 1.5, 3.0, 4.5, 6.0) Hydrogen Storage Alloys, Int. J. Hydrogen Energy, 2000, vol. 25, pp. 779–782. https://doi.org/10.1016/S0360-3199(99)00100-7

  14. Thompson, P., Reidinger, F., Reilly, J.J., Corliss, L.M., and Hastings, J.M., Neutron Diffraction Study of α-Iron Titanium Deuteride, J. Phys. F. Met. Phys., 1980, vol. 10, pp. L57–L59. https://doi.org/10.1088/0305-4608/10/2/001

  15. Fischer, P., Hälg, W., Schlapbach, L., Stucki, F., and Andresen, A.F., Deuterium Storage in FeTi. Measurement of Desorption Isotherms and Structural Studies by Means of Neutron Diffraction, Mater. Res. Bull., 1978, vol. 13, no. 9, pp. 931–946. https://doi.org/10.1016/0025-5408(78)90105-8

    Article  Google Scholar 

  16. Thompson, P., Pick, M.A., Reidinger, F., Corliss, L.M., Hastings, J.M., and Reilly, J.J., Neutron Diffraction Study of β Iron Titanium Deuteride, J. Phys. F. Met. Phys., 1978, vol. 8, no. 4, pp. L75–L80. https://doi.org/10.1088/0305-4608/8/4/001

  17. Schefer, J., Fischer, P., Hälg, W., Stucki, F., Schlapbach, L., and Andresen, A.F., Structural Phase Transitions of FeTi-Deuterides, Mater. Res. Bull., 1979, vol. 14, pp. 1281–1294. https://doi.org/10.1016/0025-5408(79)90005-9

    Article  Google Scholar 

  18. Thompson, P., Reilly, J.J., Reidinger, F., Hastings, J.M., and Corliss, L.M., Neutron Diffraction Study of γ Iron Titanium Deuteride, J. Phys. F. Met. Phys., 1979, vol. 9, no. 4, pp. L61–L66. https://doi.org/10.1088/0305-4608/9/4/001

  19. Schäfer, W., Will, G., and Schober, T., Neutron and Electron Diffraction of the FeTi–D(H)-γ-Phase, Mater. Res. Bull., 1980, vol. 15, pp. 627–634. https://doi.org/10.1016/0025-5408(80)90143-9

    Article  Google Scholar 

  20. Fruchart, D., Commandré, M., Sauvage, D., Rouault, A., and Tellgren, R., Structural and Activation Process Studies of Fe–Ti-Like Hydride Compounds, J. Less-Common Met., 1980, vol. 74, pp. 55–63. https://doi.org/10.1016/0022-5088(80)90073-9

    Article  Google Scholar 

  21. Kim, J.S., Oh, S.Y., Lee, G., Koo, Y.M., Kulkova, S.E., and Egorushkin, V.E., Theoretical Study of the Electronic Structure and Hydrogen Adsorption Properties in B2-TiFe Thin Films with Pd Coating, Int. J. Hydrogen Energy, 2004, vol. 29, pp. 87–92. https://doi.org/10.1016/S0360-3199(03)00051-X

    Article  Google Scholar 

  22. Kinaci, A. and Aydinol, M., Ab Initio Investigation of FeTi–H System, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 2466–2474. https://doi.org/10.1016/j.ijhydene.2006.10.006

    Article  Google Scholar 

  23. Fischer, P., Schefer, J., Yvon, K., Schlapbach, L., and Riesterer, T., Orthorhombic Structure of γ-TiFeD≈2, J. Less-Common Met., 1987, vol. 129, pp. 39–45. https://doi.org/10.1016/0022-5088(87)90031-2

    Article  Google Scholar 

  24. Steward, S.A., Review of Hydrogen Isotope Permeability through Materials: Lawrence Livermore National Laboratory Report, UCRL-53441, Livermore: LLNL, 1983.

  25. Nong, Z.S., Zhu, J.C., Yang, X.W., Cao, Y., Lai, Z.H., and Liu, Y., First-Principles Study of Hydrogen Storage and Diffusion in B2 FeTi Alloy, Comput. Mater. Sci., 2014, vol. 81, pp. 517–523. https://doi.org/10.1016/j.commatsci.2013.08.060

    Article  Google Scholar 

  26. Bakulin, A.V., Kulkov, S.S., Kulkova, S.E., Hocker, S., and Schmauder, S., Influence of Substitutional Impurities on Hydrogen Diffusion in B2-TiFe Alloy, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 12213–12220. https://doi.org/10.1016/j.ijhydene.2014.05.188

    Article  Google Scholar 

  27. Arnold, G. and Welter, J.M., Gase in Metallen, Darmstadt: DGM, 1979, pp. 113–124.

  28. Jungblut, B. and Sicking, G., A Tritium Scanning Method for Measuring Hydrogen Mobility in TiFe, J. Less-Common Met., 1984, vol. 101, pp. 373–382. https://doi.org/10.1016/0022-5088(84)90113-9

    Article  Google Scholar 

  29. Bowman, R.C. and Tadlock, W.E., Hydrogen Diffusion in β-Phase Titanium Iron Hydride, Solid State Commun., 1979, vol. 32, pp. 313–318. https://doi.org/10.1016/0038-1098(79)90954-2

    Article  ADS  Google Scholar 

  30. Jing, D.E. and Carter, E.A., Diffusion of Interstitial Hydrogen into and through BCC Fe from First Principles, Phys. Rev. B, 2004, vol. 70, p. 064102. https://doi.org/10.1103/PhysRevB.70.064102

    Article  ADS  Google Scholar 

  31. Han, X.L., Wang, Q., Sun, D.L., Sun, T., and Guo, Q., First-Principles Study of Hydrogen Diffusion in alpha Ti, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 3983–3987.

    Article  Google Scholar 

  32. Bakulin, A.V., Spiridonova, T.I., Kulkova, S.E., Hocker, S., and Schmauder, S., Hydrogen Diffusion in Doped and Undoped α-Ti: An Ab-Initio Investigation, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 9108–9116. https://doi.org/10.1016/j.ijhydene.2016.03.192

    Article  Google Scholar 

  33. Epifano, E. and Hug, G., First-Principle Study of the Solubility and Diffusion of Oxygen and Boron in γ-TiAl, Comput. Mater. Sci., 2020, vol. 174, p. 109475. https://doi.org/10.1016/j.commatsci.2019.109475

    Article  Google Scholar 

  34. Connétable, D., Prillieux, A., Thenot, C., and Monchoux, J.P., Theoretical Study of Oxygen Insertion and Diffusivity in the γ-TiAl L10 System, J. Phys. Condens. Matter., 2020, vol. 32, p. 175702. https://doi.org/10.1088/1361-648X/ab6a2f

    Article  ADS  Google Scholar 

  35. Bakulin, A.V., Kulkov, S.S., and Kulkova, S.E., Diffusion Properties of Oxygen in the γ-TiAl Alloy, J. Exp. Theor. Phys., 2020, vol. 130, no. 4, pp. 579–590. https://doi.org/10.1134/S1063776120030115

    Article  ADS  Google Scholar 

  36. Landman, U. and Shlesinger, M.F., Stochastic Theory of Multistate Diffusion in Perfect and Defective Systems. I. Mathematical Formalism, Phys. Rev. B, 1979, vol. 19, no. 12, pp. 6207–6219. https://doi.org/10.1103/PhysRevB.19.6207

    Article  ADS  Google Scholar 

  37. Connétable, D., Theoretical Study on Hydrogen Solubility and Diffusivity in the γ-TiAl L10 Structure, Int. J. Hydrogen Energy, 2019, vol. 44, p. 12215. https://doi.org/10.1016/j.ijhydene.2019.03.110

    Article  Google Scholar 

  38. Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990, vol. 41, pp. 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892

    Article  ADS  Google Scholar 

  39. Kresse, G. and Hafner, J., Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition Elements, J. Phys. Condens. Matter., 1994, vol. 6, pp. 8245–8257. https://doi.org/10.1088/0953-8984/6/40/015

    Article  ADS  Google Scholar 

  40. Kresse, G. and Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, vol. 47, pp. 558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  41. Kresse, G. and Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, vol. 6, pp. 15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  42. Perdew, J.P. and Wang, Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 1992, vol. 45, pp. 13244–13249. https://doi.org/10.1103/PhysRevB.45.13244

    Article  ADS  Google Scholar 

  43. Reilly, J.J., Johnson, J.R., Reidinger, F., Lynch, J.F., Tanaka, J., and Wiswall, R.H., Lattice Expansion as a Measure of Surface Segregation and the Solubility of Hydrogen in α-FeTiHx, J. Less-Common Met., 1980, vol. 73, pp. 175–182. https://doi.org/10.1016/0022-5088(80)90358-6

  44. Henkelman, G., Uberuaga, B.P., and Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths, J. Chem. Phys., 2000, vol. 113, no. 22, pp. 9901–9904. https://doi.org/10.1063/1.1329672

    Article  ADS  Google Scholar 

  45. Togo, A. and Tanaka, I., First Principles Phonon Calculations in Materials Science, Scripta Mater., 2015, vol. 108, pp. 1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  46. Eyring, H., The Activated Complex in Chemical Reactions, J. Chem. Phys., 1935, vol. 3, pp. 107–115. https://doi.org/10.1063/1.1749604

    Article  ADS  Google Scholar 

  47. Wimmer, E., Wolf, W., Sticht, J., Saxe, P., Geller, C.B., Najafabadi, R., and Young, G.A., Temperature-Dependent Diffusion Coefficients from Ab Initio Computations: Hydrogen, Deuterium, and Tritium in Nickel, Phys. Rev. B, 2008, vol. 77, p. 134305. https://doi.org/10.1103/PhysRevB.77.134305

    Article  ADS  Google Scholar 

  48. Wu, H.H. and Trinkle, D.R., Direct Diffusion through Interpenetrating Networks: Oxygen in Titanium, Phys. Rev. Lett., 2011, vol. 107, p. 045504. https://doi.org/10.1103/PhysRevLett.107.045504

    Article  ADS  Google Scholar 

  49. Bakulin, A.V., Chumakova, L.S., and Kulkova, S.E., Study of the Diffusion Properties of Oxygen in TiO2, J. Exp. Theor. Phys., 2021, vol. 133, no. 2, pp. 169–174. https://doi.org/10.1134/S1063776121070025

    Article  ADS  Google Scholar 

  50. Bakulin, A.V., Kulkov, S.S., and Kulkova, S.E., Diffusion Properties of Oxygen in the α2-Ti3Al Alloy, Intermetallics, 2021, vol. 137, p. 107281. https://doi.org/10.1016/j.intermet.2021.107281

    Article  Google Scholar 

  51. Welter, J.M. and Witt, J.D., Determination of Diffusion Coefficients by Measurements of Electrical Resistivity, Metall. Trans. A, 1981, vol. 12, pp. 1877–1882. https://doi.org/10.1007/BF02643798

    Article  Google Scholar 

  52. Connétable, D. and David, M., Diffusion of Interstitial Species (H and O atoms) in FCC Systems (Al, Cu, Co, Ni and Pd): Contribution of First and Second Order Transition States, J. Alloy. Compd, 2019, vol. 772, pp. 280–287. https://doi.org/10.1016/j.jallcom.2018.09.042

    Article  Google Scholar 

Download references

Funding

The work was performed under the government statement of work for ISPMS SB RAS, research line FWRW-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 51–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkova, S.E., Bakulin, A.V. & Chumakova, L.S. Diffusion Properties of Hydrogen in B2-TiFe. Phys Mesomech 25, 424–431 (2022). https://doi.org/10.1134/S1029959922050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050058

Keywords:

Navigation