Skip to main content
Log in

Hydrogen Effect on the Evolution of the Structural-Phase State and Superplastic Properties of Ultrafine-Grained Ti-Al-V-Mo Alloy

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The formation of ultrafine-grained structures is a well-known method of decreasing the temperature and/or increasing the strain rate to provide superplasticity in titanium alloys. Under certain conditions, dissolved hydrogen can produce a plasticizing effect on titanium alloys, showing up as a decrease in their stress and/or an increase in their ultimate strain. Here we study the effect of 0.3 wt % of dissolved hydrogen on the structure, phase state, and superplastic properties of an ultrafine-grained (α + β) Ti-Al-V-Mo system (VT16 alloy) at a temperature of 823–923 K. The ultrafine-grained structure of Ti-Al-V-Mo (VT16 alloy) and Ti-Al-V-Mo-0.3 wt % H (VT16-H alloy) results from severe plastic deformation via uniaxial compression with a change in the strain axis and in the temperature from 1023 to 823 K. In the temperature range used, the presence of hydrogen in the solid solution of VT16 alloy decreases its superplastic properties. During deformation, hydrogen is redistributed in the bulk of the material by elastic stress fields and is accumulated in the most stressed regions, leading to plastic strain localization and to a decrease in the strain to fracture. The release of hydrogen from VT16-H alloy during deformation activates its β → α transformation and associated diffusion redistribution of its alloying elements, contributing to the accommodation of grain boundary sliding and to the increase in the strain to fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ashida, M., Chen, P., Doi, H., Tsutsumi, Y., Hanawa, T., and Horita, Z., Superplasticity in the Ti-6Al-Nb Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2015, vol. 640, pp. 449–453. https://doi.org/10.1016/j.msea.2015.06.020

    Article  Google Scholar 

  2. Zherebtsov, S.V., Kudryavtsev, E.A., Salishchev, G.A., Straumal, B.B., and Semiatin, S.L., Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V during Low Temperature Superplastic Deformation, Acta Mater., 2016, vol. 121, pp. 152–163. https://doi.org/10.1016/j.actamat.2016.09.003

    Article  ADS  Google Scholar 

  3. Grabovetskaya, G.P., Mishin, I.P., Stepanova, E.N., Zabudchenko, O.V., and Ratochka, I.V., Effect of the Structural and Phase State on the Deformation Behavior and Mechanical Properties of the Ultrafine-Grained Titanium Alloy (Ti–Al–V–Мо) at Temperatures in the Range of 293–973 K, Mater. Sci. Eng. A, 2021, vol. 800, p. 140334. https://doi.org/10.1016/j.msea.2020.140334

    Article  Google Scholar 

  4. Matsumoto, H., Yoshida, K., Lee, S.-H., Ono, Y., and Chiba, A., Ti–6Al–4V Alloy with an Ultrafine-Grained Microstructure Exhibiting Low-Temperature–High-Strain-Rate Superplasticity, Mater. Lett., 2013, vol. 98, pp. 209–212. https://doi.org/10.1016/j.matlet.2013.02.033

    Article  Google Scholar 

  5. Kolachev, B.А. and Nosov, V.K., Hydrogen Plasticizing and Superplasticity of Titanium Alloys, Fiz. Met. Metalloved., 1984, vol. 57, no. 2, pp. 288–297.

    Google Scholar 

  6. Nosov, V.K., Ovchinnikov, A.V., and Shchugorev, Yu.Yu., Applications of Hydrogen Plasticizing of Titanium Alloys, Met. Sci. Heat Treat., 2008, vol. 50, pp. 378–382.

    Article  ADS  Google Scholar 

  7. Niu, Y. and Li, M., Effect of 0.16 wt % Hydrogen Addition on High Temperature Deformation Behavior of the Ti600 Titanium Alloy, Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 228–232. https://doi.org/10.1016/j.msea.2009.01.064

    Article  Google Scholar 

  8. Zhao, J., Ding, H., Zhao, W., and Jiang, Z., Effects of Hydrogen on the Hot Deformation Behaviour of Ti–6Al–4V Alloy: Experimental and Constitutive Model Studies, J. Alloy. Compd, 2013, vol. 574, pp. 407–414. https://doi.org/10.1016/j.jallcom.2013.05.159

    Article  Google Scholar 

  9. Li, X.F., Jiang, J., Wang, S., Chen, J., and Wang, Y.Q., Effect of Hydrogen on the Microstructure and Superplasticity of Ti-55 Alloy, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 6338–6349. https://doi.org/10.1016/j.ijhydene.2017.01.018

    Article  Google Scholar 

  10. Zhang, X., Zhao, Y., and Zeng, W., Effect of Hydrogen on the Superplasticity of Ti600 Alloy, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 4354–4360. https://doi.org/10.1016/j.ijhydene.2010.01.110

    Article  Google Scholar 

  11. Il’in A.A., Mechanisms and Kinetics of Phase and Structural Transformations in Titanium Alloys, Moscow: Nauka, 1994.

  12. Dutta, A. and Birla, N.C., Stress Induced Hydrogen Diffusion in α + β Titanium Alloy during Superplastic Deformation, Scripta Mater., 1987, vol. 21, pp. 1051–1054. https://doi.org/10.1016/0036-9748(87)90248-1

    Article  Google Scholar 

  13. Teter, D.F., Robertson, I.M., and Birnbaum, H.K., The Effects of Hydrogen on the Deformation and Fracture of β-Titanium, Acta Mater., 2001, vol. 49, pp. 4313–4323. https://doi.org/10.1016/S1359-6454(01)00301-9

    Article  ADS  Google Scholar 

  14. Bokshtein, S.Z., Ginzburg, S.S., Nazarova, E.N., and Nefudov, V.G., Study of Hydrogen Distribution in Metal Materials by Autoradiographic Methods, Zh. Fiz. Khim., 1981, no. 5, pp. 1269–1273.

    Google Scholar 

  15. Oriani, R.A. and Josephic, P.H., Equilibrium Aspects of Hydrogen-Induced Cracking of Steels, Acta Metall., 1974, vol. 22, pp. 1065–1074. https://doi.org/10.1016/0001-6160(74)90061-3

    Article  Google Scholar 

  16. Imai, H., Yamane, G., Matsumoto, H., Vidal, V., and Velay, V., Superplasticity of Metastable Ultrafine-Grained Ti 6242S Alloy: Mechanical Flow Behavior and Microstructural Evolution, Mater. Sci. Eng. A, 2019, vol. 754, pp. 569–580. https://doi.org/10.1016/j.msea.2019.03.085

    Article  Google Scholar 

  17. Murzinova, М.А., Salishchev, G.A., and Afonichev, D.D., Superplasticity of Hydrogen-Containing VT6 Titanium Alloy with a Submicrocrystalline Structure, Phys. Met., Metallogr., 2007, vol. 104, no. 2, pp. 195–202.

  18. Portnoy, V.K., Novikov, I.I., Il’in, A.A., Fedotov, I.L., Sirina, Yu.V., and Mamonov, A.M., Effect of Hydrogen on the Superplasticity of VT6 Alloy Sheets, Metally, 1995, no. 6, pp. 89–94.

    Google Scholar 

  19. Yoshimura, H., Kimura, K., Hayashi, M., Ishii, M., Hanamura, T., and Takamura, J., Ultra-Fine Equiaxed Grain Refinement and Improvement of Mechanical Properties of α + β Type Titanium Alloys by Hydrogenation, Hot Working, Heat Treatment and Dehydrogenation, Mater. Trans. JIM, 1994, vol. 35, no. 4, pp. 266–272. https://doi.org/10.2320/matertrans1989.35.266

    Article  Google Scholar 

  20. Grabovetskaya, G.P., Zabudchenko, O.V., Mishin, I.P., Stepanova, E.N., Ratochka, I.V., and Lykova, O.N., Evolution of the Structural-Phase State of a Titanium Alloy of the System Ti–Al–V–Mo during Formation of an Ultrafine-Grained Structure Using Reversible Hydrogenatetion, Russ. Phys. J., 2019, vol. 62, no. 8, pp. 1330–1337. https://doi.org/10.1007/s11182-019-01851-4

    Article  Google Scholar 

  21. Vinokurov, V.A., Ratochka, I.V., Naidenkin, E.V., Mishin, I.P., and Rozhentseva, N.V., Method of Severe Plastic Deformation for Forming a Submicrocrystalline Structure in Titanium Alloys, RF Patent no. 2388566, Bull. no. 13, 2010.

  22. Malykhin, D.G. and Korneyeva, V.V., Determination of Dislocation Density by X-Ray Analysis of Microdistortions in Polycrystalline Materials, Kharkov Univ. Herald, Ser. Phys.: Nucl. Part. Fields, 2010, vol. 887, no. 1, pp. 115–117.

  23. Naydenkin, E.V., Soldatenkov, A.P., Mishin, I.P., Oborin, V.A., and Shanyavskiy, A.A., Very High Cycle Fatigue Failure of Near Titanium Alloy, Phys. Mesomech., 2021, vol. 24, no. 3, pp. 326–334. https://doi.org/10.1134/S1029959921030115

    Article  Google Scholar 

  24. Maltsev, M.V. and Kashnikov, N.I., Martensite Decomposition in Continuously Heated VT16 Titanium Alloy, Fiz. Met. Metalloved., 1978, vol. 45, no. 2, pp. 426–428.

    Google Scholar 

  25. Novikov, I.I. and Portnoy, V.K., Superplasticity of Ultrafine-Grained Alloys, Moscow: Metallurgia, 1981.

  26. Semiatin, S.L., Corbett, M.W., Fagin, P.N., Salishchev, G.A., and Lee, C.S., Dynamic-Coarsening Behavior of an α/β Titanium Alloy, Metall. Mater. Trans. A, 2006, vol. 37, pp. 1125–1136. https://doi.org/10.1007/s11661-006-1091-x

    Article  Google Scholar 

  27. Frost, H.J. and Eshby, M.F., Deformation Mechanism Maps, Chelyabinsk: Metallurgia, 1989.

  28. Koppers, M., Herzig, C.H.R., Friesel, M., and Mishin, Y., Intrinsic Self-Diffusion and Substitutional Al Diffusion in α-Ti, Acta Mater., 1997, vol. 45, pp. 4181–4191. https://doi.org/10.1016/S1359-6454(97)00078-5

    Article  ADS  Google Scholar 

  29. Larikov L.N. and Isaichev, V.I., Diffusion in Metals and Alloys, Kiev: Naukova Dumka, 1986.

  30. Popov, A.A., Illarionov, A.G., Stepanov, S.I., Elkina, O.A., and Ivasishin, O.M., Effect of Quenching Temperature on Structure and Properties of Titanium Alloy: Structure and Phase Composition, Phys. Met. Metallogr., 2014, vol. 115. no. 5, pp. 507–516. https://doi.org/10.1134/S0031918X14050068

    Article  ADS  Google Scholar 

  31. Mikhaylovskaya, A.V., Mosleh, A.O., Mestre-Rinn, P., Kotov, A.D., Sitkina, M.N., Bazlov, A.I., and Louzguine-Luzgin, D.V., High-Strength Titanium-Based Alloy for Low-Temperature Superplastic Forming, Metall. Mater. Trans. A, 2021, vol. 52(1), pp. 293–302. https://doi.org/10.1007/s11661-020-06058-8

    Article  Google Scholar 

  32. Motyk, M., Sieniawski, J., and Ziaja, W., Microstructural Aspects of Superplasticity in Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2014, vol. 599, pp. 57–63. https://doi.org/10.1016/j.msea.2014.01.067

    Article  Google Scholar 

  33. Meier, M.L., Lesuer, D.R., and Mukherjee, A.K., Grain Size and β Volume Fraction Aspects of the Superplasticity of Ti-6Al-4V, Mater. Sci. Eng. A, 1991, vol. 136, pp. 71–78. https://doi.org/10.1016/0921-5093(91)90442-P

    Article  Google Scholar 

  34. Kim, J.S., Kim, J.H., Lee, Y.T., Park, C.G., and Lee, C.S., Microstructural Analysis on Boundary Sliding and Its Accommodation Mode during Superplastic Deformation of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 1999, vol. 263, pp. 272–280. https://doi.org/10.1016/S0921-5093(98)01157-5

    Article  Google Scholar 

  35. Kaibyshev, O.A., Superplasticity of Commercial Alloys, Moscow: Metallurgia, 1984.

  36. Birnbaum, H.K. and Sofronis, P., Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202. https://doi.org/10.1016/0921-5093(94)90975-X

    Article  Google Scholar 

  37. Astafurova, E.G., Melnikov, E.V., Astafurov, S.V., Ratochka, I.V., Mishin, I.P., Maier, G.G., Moskvina, V.A., Zakharov, G.N., Smirnov, A.I., and Bataev, V.A., Hydrogen Embrittlement Effects on Austenitic Stainless Steels with Ultrafine-Grained Structure of Different Morphology, Phys. Mesomech., 2019, vol. 22, no. 4, pp. 313–326. https://doi.org/10.1134/S1029959919040076

    Article  Google Scholar 

  38. Beachem, C.D., A New Model for Hydrogen Assisted Cracking (Hydrogen “Embrittlement”), Metall. Mater. Trans. B, 1972, vol. 3, pp. 437–455. https://doi.org/10.1007/BF02642048

    Article  ADS  Google Scholar 

  39. Zhilyaev, A.P. and Pshenichnyuk, A.I., Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Moscow: Fizmatlit, 2008.

Download references

Funding

The work was performed under the government statement of work for ISPMS SB RAS, research line FWRW-2021-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 38–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovetskaya, G.P., Mishin, I.P., Stepanova, E.N. et al. Hydrogen Effect on the Evolution of the Structural-Phase State and Superplastic Properties of Ultrafine-Grained Ti-Al-V-Mo Alloy. Phys Mesomech 25, 413–423 (2022). https://doi.org/10.1134/S1029959922050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050046

Keywords:

Navigation