Skip to main content
Log in

Hydrogen Embrittlement as a Surface Phenomenon in Deformed Metals

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Hydrogen charging is widely used in industry for testing metals intended for natural gas pipelines and hydrogen energetics. Here we study the distribution of mechanical damage in a specimen resulting from hydrogen charging in a neutral solution based on hydrogen-induced cracking tests according to NACE standard TM0284. The investigation is carried out by acoustoelasticity (acoustic damage detection). The basic relationships are derived for the time delay in acoustic sounding and for damage tensor components. The dependences of the principal damage tensor components on the hydrogen charging time are plotted. The volume distribution of hydrogen concentrations after hydrogen charging is measured. It is found that the skin effect due to hydrogen charging is closely related to a similar effect of damage concentration in a 100-µm-thick surface layer. This means that hydrogen embrittlement induced by artificial hydrogen charging in aqueous electrolytes can be considered as a surface phenomenon. This conclusion allows us to verify the adequacy of hydrogen-induced cracking tests for metals, mechanical models of hydrogen embrittlement, and methods for evaluating and predicting the effect of the hydrogen-containing corrosive environment on the mechanical properties of metals and metal structures. The test results will surely differ considerably from the field evidence due to different hydrogen charging times. It needs to be ascertained if this difference is significant for the fracture mechanism of the specimens. The strong surface effect observed in the experiments on artificial hydrogen charging of metals requires further investigation and comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kolachev, B.A., Hydrogen Embrittlement of Metals, Moscow: Metallurgiya, 1985.

  2. Pokhodnya, I.K., Ignatenko, A.V., Paltsevich, A.P., and Sinyuk, V.S., Hydrogen-Induced Cold Cracks in Welded Joints of High-Strength Low-Alloyed Steels (Review), TPWJ, 2013, no. 5, pp. 2–13.

    Google Scholar 

  3. Lant, T., Robinson, D.L., Spafford, B., and Storesund, J., Review of Weld Repair Procedures for Low Alloy Steels Designed to Minimise the Risk of Future Cracking, Int. J. Pressure Vessels Piping, 2001, vol. 78, no. 11–12, pp. 813–818. https://doi.org/10.1016/S0308-0161(01)00094-1

    Article  Google Scholar 

  4. Bayock, F.N., Kah, P., Mvola, B., and Layus, P., Experimental Review of Thermal Analysis of Dissimilar Welds of High-Strength Steel, Rev. Adv. Mater. Sci., 2019, vol. 58, no. 1, pp. 38–49. https://doi.org/10.1515/rams-2019-0004

    Article  Google Scholar 

  5. Askari, M., Aliofkhazraei, M., and Afroukhteh, S., A Comprehensive Review on Internal Corrosion and Cracking of Oil and Gas Pipelines, J. Nat. Gas Sci. Eng., 2019, vol. 71, pp. 102971:1–25. https://doi.org/10.1016/j.jngse.2019.102971

    Article  Google Scholar 

  6. Mohtadi-Bonab, M.A., Effects of Different Parameters on Initiation and Propagation of Stress Corrosion Cracks in Pipeline Steels: A Review, Metals, 2019, vol. 9, no. 5, pp. 590:1–18. https://doi.org/10.3390/met9050590

    Article  Google Scholar 

  7. Ohaeri, E., Eduok, U., and Szpunar, J., Hydrogen Related Degradation in Pipeline Steel: A Review, Int. J. Hydrogen Energy, 2018, vol. 43, no. 31, pp. 14584–14617. https://doi.org/10.1016/j.ijhydene.2018.06.064

    Article  Google Scholar 

  8. Wang, L., Liang, J., Li, H., Cheng, L., and Cui, Z., Quantitative Study of the Corrosion Evolution and Stress Corrosion Cracking of High Strength Aluminum Alloys in Solution and Thin Electrolyte Layer Containing Cl, Corrosion Sci., 2021, vol. 178, pp. 109076:1–19. https://doi.org/10.1016/j.corsci.2020.109076

    Article  Google Scholar 

  9. Wu, X. and Mu, F., Development of a Numerical Model for Simulating Stress Corrosion Cracking in Spent Nuclear Fuel Canisters, NPJ Mater. Degradation, 2021, vol. 5, no. 1, pp. 1–14. https://doi.org/10.1038/s41529-021-00174-5

    Article  Google Scholar 

  10. Bagchi, A., Gope, D.K., Chattopadhyaya, S., and Wuriti, G., A Critical Review on Susceptibility of Stress Corrosion Cracking in Maraging Steel Weldments, Mater. Today. Proc., 2020, vol. 27, pp. 2303–2307. https://doi.org/10.1016/j.matpr.2019.09.117

    Article  Google Scholar 

  11. Agus, R., De Matteis, A., and Ostuni, V., A Review of Corrosion and Stress Corrosion in Nuclear Plants, Essays Nucl. Technol., 2018, vol. 1, pp. 4–24.

    Google Scholar 

  12. Shafiei, A. and Kazempour-Liasi, H., Failure Analysis of Gas Turbine Torque Tube Bolts, Eng. Failure Analysis, 2021, vol. 124, pp. 105369:1–10. https://doi.org/10.1016/j.engfailanal.2021.105369

    Article  Google Scholar 

  13. Sharma, V.B., Singh, K., Gupta, R., Joshi, A., Dubey, R., Gupta, V., Bharadwa, S., Zafar, Md.I., Bajpai, S., Khan, M.A., Srivastava, A., Pathak, D., and Biswas, S., Review of Structural Health Monitoring Techniques in Pipeline and Wind Turbine Industries, Appl. Syst. Innovation, 2021, vol. 4, no. 3, pp. 59:1–31. https://doi.org/10.3390/asi4030059

    Article  Google Scholar 

  14. Balitskii, A., Hydrogen Assisted Crack Initiation and Propagation in Nickel-Cobalt Heat Resistant Superalloys, Proc. Struct. Integr., 2019, vol. 16, pp. 134–140. https://doi.org/10.1016/j.prostr.2019.07.032

    Article  Google Scholar 

  15. Ustolin, F., Paltrinieri, N., and Berto, F., Loss of Integrity of Hydrogen Technologies: A Critical Review, Int. J. Hydrogen Energy, 2020, vol. 45, no. 43, pp. 23809–23840. https://doi.org/10.1016/j.ijhydene.2020.06.021

    Article  Google Scholar 

  16. Ugarte, E.R. and Salehi, S., A Review on Well Integrity Issues for Underground Hydrogen Storage, J. Energy Resourc. Technol., 2022, vol. 144, no. 4, pp. 042001–042011. https://doi.org/10.1115/1.4052626

    Article  Google Scholar 

  17. Li, H.F., Wang, S.G., Zhang, P., Qu, R.T., and Zhang, Z.F., Crack Propagation Mechanisms of AISI 4340 Steels with Different Strength and Toughness, Mater. Sci. Eng. A, 2018, vol. 729, pp. 130–140. https://doi.org/10.1016/j.msea.2018.05.056

    Article  Google Scholar 

  18. Balitskii, A., Hydrogen Assisted Crack Initiation and Propagation in Nickel-Cobalt Heat Resistant Superalloys, Proc. Struct. Integr., 2019, vol. 16, pp. 134–140. https://doi.org/10.1016/j.prostr.2019.07.032

    Article  Google Scholar 

  19. Koyama, M., Springer, H., Merzlikin, S.V., Tsuzaki, K., Akiyama, E., and Raabe, D., Hydrogen Embrittlement Associated with Strain Localization in a Precipitation-Hardened Fe–Mn–Al–C Light Weight Austenitic Steel, Int. J. Hydrogen Energy, 2014, vol. 39, no. 9, pp. 4634–4646. https://doi.org/10.1016/j.ijhydene.2013.12.171

    Article  Google Scholar 

  20. ISO 16573-1:2020. Steel—Measurement Method for the Evaluation of Hydrogen Embrittlement Resistance of High Strength Steels—Part 1: Constant Load Test, 2020.

  21. ISO 11114-4:2017. Transportable Gas Cylinders—Compatibility of Cylinder and Valve Materials with Gas Contents—Part 4: Test Methods for Selecting Steels Resistant to Hydrogen Embrittlement, 2017.

  22. Johnson, W.H., On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids, Nature, 1875, vol. 11, no. 281, pp. 393–393. https://doi.org/10.1038/011393a0

    Article  ADS  Google Scholar 

  23. ISO 17081:2014. Method of Measurement of Hydrogen Permeation and Determination of Hydrogen UpTake and Transport in Metals by an Electrochemical Technique, 2014.

  24. ANSI/NACE TM0284-2016. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, 2016.

  25. Akiyama, E. and Li, S., Electrochemical Hydrogen Permeation Tests under Galvanostatic Hydrogen Charging Conditions Conventionally Used for Hydrogen Embrittlement Study, Corrosion Rev., 2016, vol. 34, no. 1–2, pp. 103–112. https://doi.org/10.1515/corrrev-2015-0049

    Article  Google Scholar 

  26. Lunarska, E., Chernyayeva, O., Lisovytskiy, D., and Zachariasz, R., Softening of α-Ti by Electrochemically Introduced Hydrogen, Mater. Sci. Eng. C, 2010, vol. 30, no. 1, pp. 181–189. https://doi.org/10.1016/j.msec.2009.09.016

    Article  Google Scholar 

  27. Martinsson, Å. and Sandström, R., Hydrogen Depth Profile in Phosphorus-Doped, Oxygen-Free Copper after Cathodic Charging, J. Mater. Sci., 2012, vol. 47, no. 19, pp. 6768–6776. https://doi.org/10.1007/10853-012-6592-y

    Article  ADS  Google Scholar 

  28. Wu, R., Ahlström, J., Magnusson, H., Frisk, K., Martinsson, A., and Kimab, S., Charging, Degassing and Distribution of Hydrogen in Cast Iron, Stoсkholm: Svensk Kärnbränslehantering AB, 2015.

  29. Polyanskiy, V.A., Belyaev, A.K., Alekseeva, E.L., Polyanskiy, A.M., Tretyakov, D.A., and Yakovlev, Y.A., Phenomenon of Skin Effect in Metals due to Hydrogen Absorption, Continuum Mech. Thermodyn., 2019, vol. 31, no. 6, pp. 1961–1975. https://doi.org/10.1007/s00161-019-00839-2

    Article  ADS  MathSciNet  Google Scholar 

  30. Duportal, M., Oudriss, A., Savall, C., Renaud, A., Labrugère-Sarroste, C., and Feaugas, X., On the Implication of Mobile Hydrogen Content on the Surface Reactivity of an Austenitic Stainless Steel, Electrochim. Acta., 2022, vol. 403, pp. 139684:1–13. https://doi.org/10.1016/j.electacta.2021.139684

    Article  Google Scholar 

  31. Semenov, A.S., Polyanskii, V.A., Shtukin, L.V., and Tretyakov, D.A., Effect of Surface Layer Damage on Acoustic Anisotropy, J. Appl. Mech. Tech. Phys., 2018, vol. 59, no. 6, pp. 1136–1144.

    Article  ADS  MathSciNet  Google Scholar 

  32. Belyaev, A.K., Polyanskiy, A.M., Polyanskiy, V.A., Sommitsch, C., and Yakovlev, Y.A., Multichannel Diffusion vs TDS Model on Example of Energy Spectra of Bound Hydrogen in 34CrNiMo6 Steel after a Typical Heat Treatment, Int. J. Hydrogen Energy, 2016, vol. 41, no. 20, pp. 8627–8634. https://doi.org/10.1016/j.ijhydene.2016.03.198

    Article  Google Scholar 

  33. Andronov, D.Y., Arseniev, D.G., Polyanskiy, A.M., Polyanskiy, V.A., and Yakovlev, Y.A., Application of Multichannel Diffusion Model to Analysis of Hydrogen Measurements in Solid, Int. J. Hydrogen Energy, 2017, vol. 42, no. 1, pp. 699–710. https://doi.org/10.1016/j.ijhydene.2016.10.126

    Article  Google Scholar 

  34. Polyanskiy, A.M., Polyanskiy, V.A., and Yakovlev, Y.A., Experimental Determination of Parameters of Multichannel Hydrogen Diffusion in Solid Probe, Int. J. Hydrogen Energy, 2014, vol. 39, no. 30, pp. 17381–17390.

    Article  Google Scholar 

  35. Arseniev, D.G., Belyaev, A., Polyanskiy, A.M., Polyanskiy, V.A., and Yakovlev, Y.A., Benchmark Study of Measurements of Hydrogen Diffusion in Metals, in Dynamical Processes in Generalized Continua and Structures, Cham: Springer, 2019, pp. 37–61. https://doi.org/10.1007/978-3-030-11665-1_3

  36. Belyaev, A.K., Grishchenko, A.I., Polyanskiy, V.A., Semenov, A.S., Tretyakov, D.A., Shtukin, L.V., Arseniev, D.G., and Yakovlev, Y.A., Acoustic Anisotropy and Dissolved Hydrogen as an Indicator of Waves of Plastic Deformation, in Days on Diffraction, IEEE, 2017, pp. 39–44. https://doi.org/10.1109/DD.2017.8167992

  37. Tretyakov, D., Belyaev, A., Polyanskiy, V., Stepanov, A., and Yakovlev, Y., Correlation of Acoustoelasticity with Hydrogen Charging during Destruction, in E3S Web Conf., EDP Sciences, 2019, vol. 121, pp. 01016:1–5. https://doi.org/10.1051/e3sconf/201912101016

  38. Belyaev, A.K., Polyanskiy, V.A., Semenov, A.S., Tretyakov, D.A., and Yakovlev, Y.A., Investigation of the Correlation between Acoustic Anisotropy, Damage and Measures of the Stress-Strain State, Proc. Struct. Integr., 2017, vol. 6, pp. 201–207. https://doi.org/10.1016/j.prostr.2017.11.031

    Article  Google Scholar 

  39. Diehl, D., Schneider, E.L., and Clarke, T.G.R., Formation of Hydrogen Blisters during the Solution Treatment for Aluminum Alloys, Tecnol. Metalurg. Mater. Min., 2021, vol. 18, pp. e2374:1–9. https://doi.org/10.4322/2176-1523.20212374

  40. Rhode, M., Mente, T., Steppan, E., Steger, J., and Kannengiesser, T., Hydrogen Trapping in T24 Cr-Mo-V Steel Weld Joints—Microstructure Effect vs. Experimental Influence on Activation Energy for Diffusion, Welding World, 2018, vol. 62, no. 2, pp. 277–287. https://doi.org/10.1007/s40194-017-0546-6

    Article  Google Scholar 

  41. Drexler, A., Helic, B., Silvayeh, Z., Mraczek, K., Sommitsch, C., and Domitner, J., The Role of Hydrogen Diffusion, Trapping and Desorption in Dual Phase Steels, J. Mater. Sci., 2022, vol. 57, pp. 4789–4805. https://doi.org/10.1007/s10853-021-06830-0

    Article  ADS  Google Scholar 

  42. Ramirez, M.F., Hernández, J.W., Ladino, D.H., Masoumi, M., and Goldenstein, H., Effects of Different Cooling Rates on the Microstructure, Crystallographic Features, and Hydrogen Induced Cracking of API X80 Pipeline Steel, J. Mater. Res. Technol., 2021, vol. 14, pp. 1848–1861. https://doi.org/10.1016/j.jmrt.2021.07.060

    Article  Google Scholar 

  43. Bai, P.P., Zhou, J., Luo, B.W., Zheng, S.Q., Wang, P.Y., and Tian, Y., Hydrogen Embrittlement of X80 Pipeline Steel in H2S Environment: Effect of Hydrogen Charging Time, Hydrogen-Trapped State and Hydrogen Charging–Releasing–Recharging Cycles, Int. J. Mineral. Metall. Mater., 2020, vol. 27, no. 1, pp. 63–73. https://doi.org/10.1007/s12613-019-1870-1

    Article  Google Scholar 

  44. Kyriakopoulou, H.P., Karmiris-Obratański, P., Tazedakis, A.S., Daniolos, N.M., Dourdounis, E.C., Manolakos, D.E., and Pantelis, D., Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after In Situ Hydrogen Cathodic Charging for an X65 Pipeline Steel, Micromachines, 2020, vol. 11, no. 4, pp. 430:1–20. https://doi.org/10.3390/mi11040430

    Article  Google Scholar 

  45. Li, X., Feng, Z., Song, X., Wang, Y., and Zhang, Y., Effect of Hydrogen Charging Time on Hydrogen Embrittlement of CoCrFeMnNi High-Entropy Alloy, Corrosion Sci., 2021, pp. 110073:1–14. https://doi.org/10.1016/j.corsci.2021.110073

  46. Polyanskiy, V.A., Belyaev, A.K., Arseniev, D.G., Yakovlev, Y.A., Polyanskiy, A.M., and Stoschka, M., Measurement of Dissolved Hydrogen Distributions after Ultrasonic Peening of Heat-Affected Zone of Welded Joint, AIP Conf. Proc., 2016, vol. 1785, part 1, pp. 030022:1–4. https://doi.org/10.1063/1.4967043

    Article  Google Scholar 

  47. Safyari, M. and Moshtaghi, M., Role of Ultrasonic Shot Peening in Environmental Hydrogen Embrittlement Behavior of 7075-T6 Alloy, Hydrogen, 2021, vol. 2, no. 3, pp. 377–385. https://doi.org/10.3390/hydrogen2030020

    Article  Google Scholar 

  48. Wang, Y., Xie, H., Zhou, Z., Li, X., Wu, W., and Gong, J., Effect of Shot Peening Coverage on Hydrogen Embrittlement of a Ferrite-Pearlite Steel, Int. J. Hydrogen Energy, 2020, vol. 45, no. 11, pp. 7169–7184. https://doi.org/10.1016/j.ijhydene.2020.01.021

    Article  Google Scholar 

  49. Brass, A.M., Chene, J., Anteri, G., Ovejero-Garcia, J., and Castex, L., Role of Shot-Peening on Hydrogen Embrittlement of a Low-Carbon Steel and a 304 Stainless Steel, J. Mater. Sci., 1991, vol. 26, no. 16, pp. 4517–4526. https://doi.org/10.1007/BF00543675

    Article  ADS  Google Scholar 

  50. Kawamori, M., Urushihara, W., and Yabu, S., Improved Hydrogen Embrittlement Resistance of Steel by Shot Peening and Subsequent Low-Temperature Annealing, ISIJ Int., 2020, vol. 61, no. 4, pp. 1159–1169. https://doi.org/10.2355/isijinternational.ISIJINT-2020-463

    Article  Google Scholar 

  51. Zhao, Y., Seok, M.Y., Choi, I.C., Lee, Y.H., Park, S.J., Ramamurty, U., Suh, J.-Y., and Jang, J.I., The Role of Hydrogen in Hardening/Softening Steel: Influence of the Charging Process, Scripta Mater., 2015, vol. 107, pp. 46–49. https://doi.org/10.1016/j.scriptamat.2015.05.017

    Article  Google Scholar 

  52. Tiwari, G.P., Bose, A., Chakravartty, J.K., Wadekar, S.L., Totlani, M.K., Arya, R.N., and Fotedar, R.K., A Study of Internal Hydrogen Embrittlement of Steels, Mater. Sci. Eng. A, 2000, vol. 286, no. 2, pp. 269–281. https://doi.org/10.1016/S0921-5093(00)00793-0

    Article  Google Scholar 

  53. Alekhin, V.P., Physics of Strength and Plasticity of Surface Layers of Materials, Moscow: Nauka, 1983.

  54. Khrustalev, Yu.A., Hydrogen Increase in Steels as a Result of Its Destroying, Vest. Ross. Univ. Mat., 2000, vol. 5, no. 2–3, pp. 234–236.

    Google Scholar 

  55. Khrustalev, Yu.A., Lyakhov, B.F., and Balabanov, V.I., Hydrogen Charging of the Rolling Surface of a Wheel Set, Vest. Mashinostr., 1997, no. 11, pp. 23–26.

    Google Scholar 

  56. Panin, V.E. and Panin, A.V., Effect of the Surface Layer in a Solid under Deformation, Phys. Mesomech., 2005, vol. 8, no. 5–6, pp. 7–14.

    Google Scholar 

Download references

Funding

The work was performed with the support of Russian Science Foundation Grant No. 18-19-00160, https://rscf.ru/project/18-19-00160/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Polyanskiy.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 27–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyanskiy, V.A., Belyaev, A.K., Polyanskiy, A.M. et al. Hydrogen Embrittlement as a Surface Phenomenon in Deformed Metals. Phys Mesomech 25, 404–412 (2022). https://doi.org/10.1134/S1029959922050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050034

Keywords:

Navigation