Skip to main content
Log in

Structural Features of Plastic Deformation Zones Formed in Quenched and Tempered Structural Steel during Dynamic Testing

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Systematic microhardness measurements were performed to assess the shape and size of plastic deformation zones formed under the fracture surface in quenched and tempered steel 25 during dynamic testing. It was found that as the tempering temperature of the steel decreases, the size of the plastic deformation zone in the region of dynamic crack initiation decreases, and the dynamic crack becomes flatter. The stress and strain fields at the crack front in high-tempered steel 25 under dynamic loading were modeled by finite element simulations. The simulation results revealed a multistage evolution of the stress and strain fields in tests for dynamic crack resistance. The experimental results on microhardness distribution in the plastic deformation zone under the fracture surface and strain distributions during dynamic crack propagation showed good qualitative agreement with the simulation results. Electron microscopic examination of the starting region of the plastic deformation zone and the hammer impact region revealed adiabatic shear bands in the subsurface of the fractured specimen. Tracks of composition contrast observed along the band boundaries indicate the mass transfer of carbon. Simultaneous studies of the structure and fracture surface in the impact region showed that the dynamic crack propagates mainly along the boundaries of structural elements that induce adiabatic shear, resulting in the formation of characteristic grooves on the fracture surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Withers, P.J., Lopez-Crespo, P., Mostafavi, M., Steuwer, A., Kelleher, J.F., and Buslaps, T., 2D Mapping of Plane Stress Crack-Tip Fields Following an Overload, Fratt. Integr. Strut., 2015, vol. 33, pp. 151–158. https://doi.org/10.3221/IGF-ESIS.33.19

    Article  Google Scholar 

  2. López-Crespo, P., Patterson, E.A., Shterenlikht, A., Withers, P.J., and Yates, J.R., Study of a Crack at a Fastener Hole by Image Correlation, Exp. Mech., 2009, vol. 49, pp. 551–559. https://doi.org/10.1007/s11340-008-9161-1

    Article  Google Scholar 

  3. Lopez-Crespo, P., Withers, P.J., Yusof, F., Dai, H., Steuwer, A., Kelleher, J.F., and Buslaps, T., Overload Effects on Fatigue Crack-Tip Fields under Plane Stress Conditions: Surface and Bulk Analysis, Fatig. Fract. Eng. Mater. Struct., 2013, vol. 36, pp. 75–84. https://doi.org/10.1111/j.1460-2695.2012.01670.x

    Article  Google Scholar 

  4. Qu, P., Toda, H., Zhang, H., Sakaguchi, Y., Qian, L., Kobayashi, M., and Uesugi, K., Local Crack Driving Force Analysis of a Fatigue Crack by a Microstructural Tracking Method, Scripta Mater., 2009, vol. 61, pp. 489–492. https://doi.org/10.1016/j.scriptamat.2009.05.004

    Article  Google Scholar 

  5. Withers, P.J., Fracture Mechanics by Three-Dimensional Crack-Tip Synchrotron X-Ray Microscopy, Philos. Trans. A, 2015, vol. 373, no. 2036, article 20130157. https://doi.org/10.1098/rsta.2013.0157

  6. Shanyavsky, A.A., Models for the Origin and Development of Fatigue Failure in the Subsurface of Metals, Nauch. Vestnik MGTU GA, 2012, no. 179, pp. 32–44.

    Google Scholar 

  7. Shaniavski, A.A., Rotational Instability of Mesoscale Deformation and Fracture of Metals in Fatigue Crack Propagation. I. Plastic Deformation at the Crack Tip, Phys. Mesomech., 2001, vol. 4, no. 1, pp. 67–73.

    Google Scholar 

  8. Plekhov, O.A., Chudinov, V.V., Leontiev, V.A., and Naimark, O.B., Study of Energy Dissipation and Absorption in Submicrocrystalline Titanium under Quasi-Static and Dynamic Loading, Comp. Cont. Mech., 2008, vol. 1, no. 4, pp. 69–77.

    Article  Google Scholar 

  9. Chausov, N.G., Zasimchuk, E.E., Markashova, L.I., et al., Deformation Behavior of Ductile Materials in Dynamic Nonequilibrium Processes, Zavod. Lab. Diagnost. Mater., 2009, vol. 75, no. 6, pp. 52–59.

    Google Scholar 

  10. Klevtsov, G.V., Klevtsova, N.A., and Frolova, O.A., Metals Fracture Micromechanism and Plastic Zones Formation at the Crack Tip, Eur. J. Nat. History, 2007, no. 4, pp. 142–147.

    Google Scholar 

  11. Simonov, M.Yu., Georgiev, M.N., Simonov, Yu.N., and Shaimanov, G.S., Evaluation of the Sizes of the Zone of Plastic Strain of High-Toughness Materials after Dynamic Tests by the Method of Systematic Measurement of Microhardness, Met. Sci. Heat Treat., 2013, vol. 54, pp. 595–599. https://doi.org/10.1007/s11041-013-9555-2

    Article  ADS  Google Scholar 

  12. Orowan, E., Notch Brittleness and the Strength of Metals, Trans. Inst. Eng. Shipbuilders Scotl., 1945, vol. 89, pp. 165–215.

    Google Scholar 

  13. Klevtsov G.V. and Shvets, G.B., X-Ray Diffraction Analysis as a Method of Fracture Surface Analysis, Leningrad: Mashinostroenie, 1986, iss. 35, pp. 3–11.

  14. Irvin, G.R., Analysis of Stresses Near a Crack to the Crack Extension Force, J. Appl. Mech., 1957, vol. 24, no. 3, pp. 361–364.

    Article  ADS  Google Scholar 

  15. Bannikov, M.V., Fedorova, A.Yu., Terekhina, A.I., and Plekhov, O.A., Experimental Study of Fractal Properties of Fatigue Crack Growth and Energy Dissipation in Crack Tip, PNRPU Mech. Bull., 2013, no. 2, pp. 21–36.

    Google Scholar 

  16. Klevtsov, G.V., Formation Mechanisms of Plastic Zones at the Crack Tip under Different Loads and X-Ray Diagnostics of Fracture, Vestnik Orenburg. Gos. Univ., 2006, vol. 50, no. 1, pp. 81–88.

    Google Scholar 

  17. Plekhov, O., Fedorova, A., Kostina, A., and Panteleev, I., Theoretical and Experimental Study of Strain Localization and Energy Dissipation at Fatigue Crack Tip, Proc. Mater. Sci., 2014, no. 3, pp. 1020–1025. https://doi.org/10.1016/j.mspro.2014.06.166

    Article  Google Scholar 

  18. Buffière, J.-Y., Ferrie, E., Proudhon, H., and Ludwig, W., Three Dimensional Visualisation of Fatigue Cracks in Metals Using High Resolution Synchrotron X-Ray Microtomography, Mater. Sci. Tech., 2006, vol. 22, no. 9, pp. 1019–1024. https://doi.org/10.1179/174328406X114135

    Article  Google Scholar 

  19. Herbig, M., King, A., Reischig, P., Proudhon, H., Lauridsen, E.M., Marrow, J., Buffiere, J.-Y., and Ludwig, W., 3-D Growth of a Short Fatigue Crack within a Polycrystalline Microstructure Studied Using Combined Diffraction and Phase-Contrast X-Ray Tomography, Acta Mater., 2011, vol. 59, pp. 590–601. https://doi.org/10.1016/j.actamat.2010.09.063

    Article  ADS  Google Scholar 

  20. Ludwig, W., Schmidt, S., Lauridsen, E.M., and Poulsen, H.F., X-Ray Diffraction Contrast Tomography: A Novel Technique for Three-Dimensional Grain Mapping of Polycrystals. I. Direct Beam Cas, J. Appl. Crystall., 2008, vol. 1, pp. 302–309. https://doi.org/10.1107/S0021889808001684

    Article  Google Scholar 

  21. Li, H., Toda, H., Uesugi, K., Takeuchi, A., Suzuki, Y., and Kobayashi, M., Application of Diffraction-Amalgamated Grain Boundary Tracking to Fatigue Crack Propagation Behavior in High Strength Aluminum Alloy, Mater. Trans., 2015, vol. 56, no. 3, pp. 424–428. https://doi.org/10.2320/matertrans.M2014340

    Article  Google Scholar 

  22. Simonov, Yu.N., Simonov, M.Yu., Shaimanov, G.S., and Makarova, L.E., RF Patent 2516391, MPK G01N 3/28, A Method for Determining the Plastic Deformation Zone beneath the Fracture Surface of a Sample, Bull., 2014, no. 14, p. 15.

    Google Scholar 

  23. Simonov, M.Yu., Shaimanov, G.S., and Simonov, Yu.N., Formation of Zones of Plastic Strain in Quenched and Tempered Steel 09G2S during Dynamic Tests, Met. Sci. Heat Treat., 2016, vol. 57, pp. 746–751. https://doi.org/10.1007/s11041-016-9952-4

    Article  ADS  Google Scholar 

  24. Simonov, M.Yu., Georgiev, M.N., Shaimanov, G.S., Simonov, Yu.N., and Zaporozhan, R.S., Comparative Analysis of Zones of Plastic Strain, Dynamic Crack Resistance, Structure and Micromechanisms of Crack Propagation in Structural Steels 09G2S, 25 and 40 in High-Toughness Condition, Met. Sci. Heat Treat., 2016, vol. 58, pp. 97–105. https://doi.org/10.1007/s11041-016-9970-2

    Article  ADS  Google Scholar 

  25. Simonov, Yu.N., Simonov, M.Yu., Panov, D.O., Kasatkin, A.V., and Poduzov, D.P., RF Patent 2485476, MPK G01N 3/30, A Method for Assessing the Impact Strength of High-Viscosity Sheet Structural Steels, Izobret. Polezn. Model., 2013, no. 17, p. 14.

    Google Scholar 

  26. Georgiev, M.N., Simonov, Yu.N., and Simonov, M.Yu., Effect of Crack Length and Lateral Notches on Plane Strain Conditions under Impact Loading, Zavod. Lab. Diagnost. Mater., 2010, vol. 76, no. 9, pp. 56–58.

    Google Scholar 

  27. Simonov, M.Yu., Simonov, Yu.N., Khanov, A.M., and Shaimanov, G.S., Structure, Dynamic Crack Resistance and Fracture Mechanisms of Quenched and Tempered Structural Steels, Met. Sci. Heat Treat., 2013, vol. 54, pp. 587–594. https://doi.org/10.1007/s11041-013-9554-3

    Article  ADS  Google Scholar 

  28. Georgiev, M.N., Simonov, M.Yu., and Simonov, Yu.N., Evaluation of the Work of Fracture of Impact Samples with Lateral Notches, Zavod. Lab. Diagnost. Mater., 2012, vol. 78, no. 9, pp. 56–61.

    Google Scholar 

  29. Georgiev, M.N., Simonov, Yu.N., Mezhova, N.Ya., and Minaev, V.N., Structural Aspects of Cyclic Crack Resistance of Quenched and Tempered Steels, FKhMM, 1985, vol. 21, no. 5, pp. 48–53.

    Google Scholar 

  30. Del, G.D., Determination of Stresses in the Plastic Zone by Hardness Distribution, Moscow: Mashinostroenie, 1971.

  31. Wright, T.W., The Physics and Mathematics of Adiabatic Shear Bands, Cambridge: University Press, 2002.

  32. Belikova, A.F., Buravova, S.N., and Gordopolov, Yu.A., Strain Localization and Its Connection with the Deformed State of the Material, Tech. Phys., 2013, vol. 58, pp. 302–304. https://doi.org/10.1134/S1063784213020035

    Article  Google Scholar 

  33. Froustey, C., Naimark, O.B., Panteleev, I.A., Bilalov, D.A., Petrova, A.N., and Lyapunova, E.A., Multiscale Structural Relaxation and Adiabatic Shear Failure Mechanisms, Phys. Mesomech., 2017, vol. 20, no. 1, pp. 31–42. https://doi.org/10.1134/S1029959917010039

    Article  Google Scholar 

  34. Danilov, V.I., Orlova, D.V., Zuev, L.B., and Bolotina, I.O., On the Localization of Plastic Strain at the Prefailure Stage and the Possibility of Predicting the Site and Time of Ductile Rupture, Tech. Phys., 2011, vol. 56, pp. 207–213. https://doi.org/10.1134/S1063784211020095

    Article  Google Scholar 

  35. Belikova, A.F., Buravova, S.N., and Petrov, E.V., Strain Localization under Dynamic Loading, Tech. Phys., 2013, vol. 58, pp. 1152–1158. https://doi.org/10.1134/S1063784213080057

    Article  Google Scholar 

  36. Lyapunova, E.A., Petrova, A.N., Brodova, I.G., Naimark, O.B., Sokovikov, M.A., Chudinov, V.V., and Uvarov, S.V., Mechanisms of Plastic Strain Localization and Formation of Multiscale Defect Structures in Dynamically Loaded Al 6061 Alloy, Fiz. Mezomekh., 2012, vol. 15, no. 2, pp. 61–67. https://doi.org/10.24411/1683-805X-2012-00045

    Article  Google Scholar 

  37. Rittel, D., Landau, P., and Venkert, A., Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, vol. 101, no. 165501, pp. 1–4. https://doi.org/10.1103/PhysRevLett.101.165501

    Article  Google Scholar 

  38. Simonov, M.Y., Structural Aspects of Zones of Plastic Strain. Part II. Effect of Mass Transfer, Met. Sci. Heat Treat., 2020, vol. 61, pp. 639–647. https://doi.org/10.1007/s11041-020-00472-w

    Article  ADS  Google Scholar 

  39. Simonov, M.Yu., Shaimanov, G.S., Pertsev, A.S., Yurchenko, A.N., and Simonov, Yu.N., Dynamic Crack Resistance and Steel 09G2S Tubular Billet Structure after Deformation and Heat Treatment, Met. Sci. Heat Treat., 2017, vol. 59, pp. 389–396. https://doi.org/10.1007/s11041-017-0161-6

    Article  ADS  Google Scholar 

  40. Panin, V.E., Panin, A.V., Moiseenko, D.D., Shlyapin, A.D., Avraamov, Yu.S., and Koshkin, V.I., Physical Mesomechanics of a Deformed Solid as a Multilevel System. IV. Effect of Particle Interpenetration without Continuity Violation under the Action of Concentrated Energy Fluxes, Phys. Mesomech., 2007, vol. 10, no. 1–2, pp. 25–31.

    Article  Google Scholar 

  41. Panin, V.E., Egorushkin, V.E., Khon, Yu.A., and Elsukova, T.F., Atom-Vacancy States in Crystals, Sov. Phys. J., 1982, vol. 25, pp. 1073–1093.

    Article  Google Scholar 

  42. Panin, V.E., New Area in Solid State Physics, Sov. Phys. J., 1987, vol. 30, pp. 1–5.

    Article  Google Scholar 

  43. Egorushkin, V.E., Panin, V.E., Savushkin, E.V., and Khon, Yu.A., Strongly Excited States in Crystals, Sov. Phys. J., 1987, vol. 30, pp. 5–24.

    Article  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation as part of activities at the Perm Scientific and Educational Center “Rational Subsoil Use”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Simonov.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 1, pp. 79–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, M.Y., Naimark, O.B., Simonov, Y.N. et al. Structural Features of Plastic Deformation Zones Formed in Quenched and Tempered Structural Steel during Dynamic Testing. Phys Mesomech 25, 259–269 (2022). https://doi.org/10.1134/S1029959922030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922030067

Keywords:

Navigation