Skip to main content

Modeling of the Effect of Microscale Morphological Parameters on the Deformation Behavior of Porous Materials with a Metal Matrix

Abstract

This paper presents results of numerical investigation of the specifics of elastoplastic deformation and damage accumulation in representative volume elements (RVEs) of open-cell and closed-cell porous metal materials under tensile and compressive loads. The Johnson–Cook model was used to describe the elastoplastic behavior and fracture of the aluminum matrix material. Fracture propagation in RVEs of porous media needs to be modeled with explicit consideration for morphological parameters of the internal structure. This feature can be used to form structures with tailored mechanical response using recent advances in additive manufacturing technologies. These technologies, also referred to as 3D printing, provide a free choice of topology by using predetermined digital models that can be optimized before being implemented as real objects. This leads to a task of estimation of the effect of controlled topology on the mechanical behavior of the designed porous structures. The obtained results demonstrate the effect of variation of morphological properties on the elastoplastic behavior and fracture of bicontinuous metal structures under tensile and compressive loads.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Lefebvre, L.-P., Banhart, J., and Dunand, D.C., Porous Metals and Metallic Foams: Current Status and Recent Developments, Adv. Eng. Mater., 2008, vol. 10, no. 9, pp. 775–787. https://doi.org/10.1002/adem.200800241

    Article  Google Scholar 

  2. 2

    Matheson, K.E., Cross, K.K., Nowell, M.M., and Spear, A.D., A Multiscale Comparison of Stochastic Open-Cell Aluminum Foam Produced Via Conventional and Additive-Manufacturing Routes, Mater. Sci. Eng. A, 2017, vol. 707, pp. 181–192. https://doi.org/10.1016/j.msea.2017.08.102

    Article  Google Scholar 

  3. 3

    Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N., Metal Foams: A Design Guide, Mater. Design, 2002. https://doi.org/10.1016/s0261-3069(01)00049-8

  4. 4

    Gorny, B., Niendorf, T., Lackmann, J., Thoene, M., Troester, T., and Maier, H.J., In Situ Characterization of the Deformation and Failure Behavior of Non-Stochastic Porous Structures Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2011, vol. 528, no. 27, pp. 7962–7967. https://doi.org/10.1016/j.msea.2011.07.026

    Article  Google Scholar 

  5. 5

    Murr, L.E., Gaytan, S.M., Medina, F., Lopez, H., Martinez, E., Machado, B.I., Hernandez, D.H., Martinez, L., Lopez, M.I., Wicker, R.B., and Bracke, J., Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2010, vol. 368, no. 1917, pp. 1999–2032. https://doi.org/10.1098/rsta.2010.0010

    ADS  Article  Google Scholar 

  6. 6

    Ramirez, D.A., Murr, L.E., Li, S.J., Tian, Y.X., Martinez, E., Martinez, J.L., Machado, B.I., Gaytan, S.M., Medina, F., and Wicker, R.B., Open-Cellular Copper Structures Fabricated by Additive Manufacturing Using Electron Beam Melting, Mater. Sci. Eng. A, 2011, vol. 528, no. 16–17, pp. 5379–5386. https://doi.org/10.1016/j.msea.2011.03.053

    Article  Google Scholar 

  7. 7

    Kumar, A., Collini, L., Daurel, A., and Jeng, J.Y., Design and Additive Manufacturing of Closed Cells from Supportless Lattice Structure, Addit. Manuf., 2020, vol. 33, p. 101168. https://doi.org/10.1016/j.addma.2020.101168

    Article  Google Scholar 

  8. 8

    Kadkhodapour, J., Montazerian, H., Samadi, M., Schmauder, S., and Abouei Mehrizi, A., Plastic Deformation and Compressive Mechanical Properties of Hollow Sphere Aluminum Foams Produced by Space Holder Technique, Mater. Design, 2015. https://doi.org/10.1016/j.matdes.2015.05.086

  9. 9

    Gong, L., Kyriakides, S., and Jang, W.Y., Compressive Response of Open-Cell Foams. Part I: Morphology and Elastic Properties, Int. J. Solids Struct., 2005, vol. 42, no. 5–6, pp. 1355–1379. https://doi.org/10.1016/j.ijsolstr.2004.07.023

    Article  Google Scholar 

  10. 10

    Jang, W.Y., Kraynik, A.M., and Kyriakides, S., On the Microstructure of Open-Cell Foams and Its Effect on Elastic Properties, Int. J. Solids Struct., 2008, vol. 45, no. 7–8, pp. 1845–1875. https://doi.org/10.1016/j.ijsolstr.2007.10.008

    Article  Google Scholar 

  11. 11

    Shunmugasamy, V.C. and Mansoor, B., Compressive Behavior of a Rolled Open-Cell Aluminum Foam, Mater. Sci. Eng. A, 2018, vol. 715, pp. 281–294. https://doi.org/10.1016/j.msea.2018.01.015

    Article  Google Scholar 

  12. 12

    Shalimov, A. and Tashkinov, M., Numerical Investigation of Damage Accumulation and Failure Processes in Random Porous Bicontinuous Media, Proc. Struct. Integr., 2020, vol. 25, no. 2019, pp. 386–393. https://doi.org/10.1016/j.prostr.2020.04.044

    Article  Google Scholar 

  13. 13

    Jung, A. and Diebels, S., Microstructural Characterisation and Experimental Determination of a Multiaxial Yield Surface for Open-Cell Aluminium Foams, Mater. Design, 2017, vol. 131, no. 6, pp. 252–264. https://doi.org/10.1016/j.matdes.2017.06.017

    Article  Google Scholar 

  14. 14

    Zhou, J., Allameh, S., and Soboyejo, W.O., Microscale Testing of the Strut in Open Cell Aluminum Foams, J. Mater. Sci., 2005, vol. 40, no. 2, pp. 429–439. https://doi.org/10.1007/s10853-005-6100-8

    ADS  Article  Google Scholar 

  15. 15

    Wang, Z., Shen, J., Lu, G., and Zhao, L., Compressive Behavior of Closed-Cell Aluminum Alloy Foams at Medium Strain Rates, Mater. Sci. Eng. A, 2011, vol. 528, no. 6, pp. 2326–2330. https://doi.org/10.1016/j.msea.2010.12.059

    Article  Google Scholar 

  16. 16

    Beets, N., Stuckner, J., Murayama, M., and Farkas, D., Fracture in Nanoporous Gold: An Integrated Computational and Experimental Study, Acta Mater., 2020, vol. 185, pp. 257–270. https://doi.org/10.1016/j.actamat.2019.12.008

    ADS  Article  Google Scholar 

  17. 17

    Jiao, J. and Huber, N., Deformation Mechanisms in Nanoporous Metals: Effect of Ligament Shape and Disorder, Comput. Mater. Sci., 2017, vol. 127, pp. 194–203. https://doi.org/10.1016/j.commatsci.2016.10.035

    Article  Google Scholar 

  18. 18

    Griffiths, E., Soyarslan, C., Bargmann, S., and Reddy, B.D., Insights into Fracture Mechanisms in Nanoporous Gold and Polymer Impregnated Nanoporous Gold, Extrem. Mech. Lett., 2020, vol. 39, p. 100815. https://doi.org/10.1016/j.eml.2020.100815

    Article  Google Scholar 

  19. 19

    Petit, C., Maire, E., Meille, S., and Adrien, J., Two-Scale Study of the Fracture of an Aluminum Foam by X-Ray Tomography and Finite Element Modeling, Mater. Design, 2017, vol. 120, pp. 117–127. https://doi.org/10.1016/j.matdes.2017.02.009

    Article  Google Scholar 

  20. 20

    Vengatachalam, B., Poh, L.H., Liu, Z.S., Qin, Q.H., and Swaddiwudhipong, S., Three Dimensional Modelling of Closed-Cell Aluminium Foams with Predictive Macroscopic Behaviour, Mech. Mater., 2019, vol. 136, no. 5, p. 103067. https://doi.org/10.1016/j.mechmat.2019.103067

    Article  Google Scholar 

  21. 21

    Zhang, Y., Jin, T., Li, S., Ruan, D., Wang, Z., and Lu, G., Sample Size Effect on the Mechanical Behavior of Aluminum Foam, Int. J. Mech. Sci., 2019, vol. 151, no. 08-2018, pp. 622–638. https://doi.org/10.1016/j.ijmecsci.2018.12.019

    Article  Google Scholar 

  22. 22

    Tashkinov, M.A., Multipoint Stochastic Approach to Localization of Microscale Elastic Behavior of Random Heterogeneous Media, Comput. Struct., 2021, vol. 249, p. 106474. https://doi.org/10.1016/j.compstruc.2020.106474

    Article  Google Scholar 

  23. 23

    Tashkinov, M., Statistical Characteristics of Structural Stochastic Stress and Strain Fields in Polydisperse Heterogeneous Solid Media, Comput. Mater. Sci., 2014, vol. 94(C), pp. 44–50. https://doi.org/10.1016/j.commatsci.2014.01.050

    Article  Google Scholar 

  24. 24

    Johnson, G.R. and Cook, W.H., Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, vol. 21, no. 1, pp. 31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  25. 25

    Cao, Y., Di, H.S., Misra, R.D.K., and Zhang, J., Hot Deformation Behavior of Alloy 800H at Intermediate Temperatures: Constitutive Models and Microstructure Analysis, J. Mater. Eng. Perform., 2014. https://doi.org/10.1007/s11665-014-1220-4

  26. 26

    Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J.E., Schneider, K., Soyarslan, C., and Wilmers, J., Generation of 3D Representative Volume Elements for Heterogeneous Materials: A Review, Prog. Mater. Sci., 2018, vol. 96, pp. 322–384. https://doi.org/10.1016/j.pmatsci.2018.02.003

    Article  Google Scholar 

  27. 27

    Lesuer, D.R., Kay, G.J., and LeBlanc, M.M., Modeling Large Strain, High Rate Deformation in Metals, in Proceedings of the TMS Fall Meeting, 2001, pp. 75–86.

Download references

ACKNOWLEDGMENTS

The authors would like to take an opportunity to congratulate Professor Siegfried Schmauder on his anniversary, with wishes of prosperity and successful continuation of his inspiring work.

Funding

The research was performed at Perm National Research Polytechnic University at the support of the Russian Science Foundation (project No. 20-79-00216).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Tashkinov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tashkinov, M.A., Shalimov, A.S. Modeling of the Effect of Microscale Morphological Parameters on the Deformation Behavior of Porous Materials with a Metal Matrix. Phys Mesomech 24, 618–624 (2021). https://doi.org/10.1134/S1029959921050131

Download citation

Keywords:

  • porous media
  • fracture
  • plasticity
  • Johnson–Cook law
  • microstructure
  • morphology
  • finite element analysis