Skip to main content

Evolution of Mesoscopic Deformation-Induced Surface Roughness and Local Strains in Tensile Polycrystalline Aluminum

Abstract

This paper experimentally investigates the process of deformation-induced mesoscopic surface roughening in commercially pure aluminum under uniaxial tension. Surface profiles are recorded in selected observation areas at different stages of stretching using a contact profilometer. It is shown that multiscale undulations are formed on the surface from the very beginning of plastic deformation and evolve during stretching. The undulations formed due to the collective displacement of 10–15 grains make the greatest contribution to roughening. A quantitative assessment and comparison of the behavior of mesoscopic undulations are carried out using a dimensionless parameter of the degree of roughness, which is the ratio of profile length to evaluation length, determined for the obtained surface profiles in the studied strain range. A correlation between the roughness degree and local plastic strains is established.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Zuev, L.B., Barannikova, S.A., Lunev, A.G., Kolosov, S.V., and Zharmukhambetova, A.M., Basic Relationships of the Autowave Model of a Plastic Flow, Russ. Phys. J., 2019, vol. 61, pp. 1709–1717. https://doi.org/10.1007/s11182-018-1591-3

    Article  Google Scholar 

  2. 2

    Gorodetskyi, O., Hütter, M., and Geers, M.G.D., Detecting Precursors of Localization by Strain-Field Analysis, Mech. Mater., 2017, vol. 110, pp. 84–97. https://doi.org/10.1016/j.mechmat.2017.05.001

    Article  Google Scholar 

  3. 3

    Erofeev, V.I., Ilyakhinsky, A.V., Nikitina, E.A., Pakhomov, P.A., and Rodyushkin, V.M., Ultrasonic Sensing Method for Evaluating the Limit State of Metal Structures Associated with the Onset of Plastic Deformation, Phys. Mesomech., 2020, vol. 23, no. 3, pp. 241–245. https://doi.org/10.1134/S102995992003008X

    Article  Google Scholar 

  4. 4

    Burkov, M.V., Eremin, A.V., Lyubutin, P.S., Byakov, A.V., and Panin, S.V., Applying an Ultrasonic Lamb Wave Based Technique to Testing the Condition of V96ts3T12 Aluminum Alloy, Russ. J. Nondestruct. Test., 2017, vol. 53. pp. 817–829. https://doi.org/10.1134/S1061830917120038

    Article  Google Scholar 

  5. 5

    Strzalka, C. and Zehn, M., The Influence of Loading Position in a Priori High Stress Detection Using Mode Superposition, Rep. Mech. Eng., 2020, vol. 1, no. 1, pp. 93–102. https://doi.org/10.31181/rme200101093s

    Article  Google Scholar 

  6. 6

    Fragassa, C., Minak, G., and Pavlovic, A., Measuring Deformations in the Telescopic Boom under Static and Dynamic Load Conditions, Facta Univ. Mech. Eng., 2020, vol. 18, no. 2, pp. 315–328. https://doi.org/10.22190/FUME181201001F

    Article  Google Scholar 

  7. 7

    Saravanakumar, K., Lakshminarayanan, B.S., Arumugam, V., Santulli, C., Pavlovic, A., and Fragassa, C., Quasi-Static Indentation Behavior of GFRP with Milled Glass Fiber Filler Monitored by Acoustic Emission, Facta Univ. Mech. Eng., 2019, vol. 17, no. 3, pp. 425–443. https://doi.org/10.22190/FUME181204004S

    Article  Google Scholar 

  8. 8

    Wang, K., Carsley, J.E., He, B., Li, J., and Zhang, L., Measuring Forming Limit Strains with Digital Image Correlation Analysis, J. Mater. Process. Tech., 2014, vol. 214, pp. 1120–1130. https://doi.org/10.1016/j.jmatprotec.2014.01.001

    Article  Google Scholar 

  9. 9

    Paul, S.K., Roy, S., Sivaprasad, S., and Tarafder, S., Forming Limit Diagram Generation from In-Plane Uniaxial and Notch Tensile Test with Local Strain Measurement through Digital Image Correlation, Phys. Mesomech., 2019, vol. 22, no. 4, pp. 340–344. https://doi.org/10.1134/S1029959919040106

    Article  Google Scholar 

  10. 10

    Brlić, T., Rešković, S., Jurković, Z., and Janeš, G., Mathematical Modeling of the Influence Parameters during Formation and Propagation of the Lüders Bands, Facta Univ. Mech. Eng., 2020, vol. 18, no. 4, pp. 595–610. https://doi.org/10.22190/FUME200416041B

    Article  Google Scholar 

  11. 11

    Panin, V.E. and Egorushkin, V.E., Deformable Solid as a Nonlinear Hierarchically Organized System, Phys. Mesomech., 2011, vol. 14, no. 5–6, pp. 207–223.

    Article  Google Scholar 

  12. 12

    Panin, V.E., Strain-Induced Defects in Solids at the Different Scale Levels of Plastic Deformation and the Nature of Their Sources, Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 197–200.

    Article  Google Scholar 

  13. 13

    Schmauder, S. and Schäfer, I., Multiscale Materials Modeling: Approaches to Full Multiscaling, Berlin: Walter de Gruyter GmbH & Co KG, 2016.

  14. 14

    Panin, V.E., Overview on Mesomechanics of Plastic Deformation and Fracture of Solids, Theor. Appl. Fract. Mech., 1998, vol. 30, pp. 1–11.

    Article  Google Scholar 

  15. 15

    Shanyavskiy, A.A. and Soldatenkov, A.P., Scales of Metal Fatigue Limit, Phys. Mesomech., 2020, vol. 23, no. 2, pp. 120–127. https://doi.org/10.1134/S1029959920020034

    Article  Google Scholar 

  16. 16

    Botvina, L.R., Bolotnikov, A.I., and Sinev, I.O., Hierarchy of Microcracks under Cyclic and Static Loads, Phys. Mesomech., 2020, vol. 23, no. 6, pp. 466–476. https://doi.org/10.1134/S1029959920060028

    Article  Google Scholar 

  17. 17

    Makarov, P.V., Schmauder, S., Cherepanov, O.I., Smolin, I.Yu., Romanova, V.A., Balokhonov, R.R., Saraev, D.Yu., Soppa, E., Kizler, P., Fischer, G., Hu, S., and Ludwig, M., Simulation of Elastic Plastic Deformation and Fracture of Materials at Micro-, Meso- and Macrolevels, Theor. Appl. Fract. Mech., 2001, vol. 37, pp. 183–244.

    Article  Google Scholar 

  18. 18

    Carpinteri, A. and Accornero, F., Rotation Versus Curvature Fractal Scaling in Bending Failure, Phys. Mesomech., 2019, vol. 22, no. 1, pp. 46–51. https://doi.org/10.1134/S1029959919010089

    Article  Google Scholar 

  19. 19

    Alfyorova, E.A. and Lychagin, D.V., Self-Organization of Plastic Deformation and Deformation Relief in FCC Single Crystals, Mech. Mater., 2018, vol. 117, pp. 202–213. https://doi.org/10.1016/j.mechmat.2017.11.011

    Article  Google Scholar 

  20. 20

    Barkia, B., Doquet, V., Héripré, E., and Guillot, I., Characterization and Analysis of Deformation Heterogeneities in Commercial Purity Titanium, Mater. Charact., 2015, vol. 108, pp. 94–101. https://doi.org/10.1016/j.matchar.2015.09.001

    Article  Google Scholar 

  21. 21

    Romanova, V., Balokhonov, R., Emelianova, E., Sinyakova, E., and Kazachenok, M., Early Prediction of Macroscale Plastic Strain Localization in Titanium from Observation of Mesoscale Surface Roughening, Int. J. Mech. Sci., 2019, vol. 161–162. https://doi.org/10.1016/j.ijmecsci.2019.105047

  22. 22

    Romanova, V., Balokhonov, R., Panin, A., Kazachenok, M., and Kozelskaya, A., Micro- and Mesomechanical Aspects of Deformation-Induced Surface Roughening in Polycrystalline Titanium, Mater. Sci. Eng. A, 2017, vol. 697, pp. 248–258. https://doi.org/10.1016/j.engfailanal.2020.104437

    Article  Google Scholar 

  23. 23

    Romanova, V., Balokhonov, R., Emelianova, E., Pisarev, M., and Dymnich, E., Numerical Study of the Texture Effect on Deformation-Induced Surface Roughening in Titanium Polycrystals, Eng. Fail. Anal., 2020, vol. 110. https://doi.org/10.1016/j.engfailanal.2020.104437

  24. 24

    Romanova, V.A., Balokhonov, R.R., and Schmauder, S., Numerical Study of Mesoscale Surface Roughening in Aluminum Polycrystals under Tension, Mater. Sci. Eng. A, 2013, vol. 564, pp. 255–263. https://doi.org/10.1016/j.msea.2012.12.004

    Article  Google Scholar 

  25. 25

    Panin, V.E., Surikova, N.S., Elsukova, T.F., Vlasov, I.V., and Borisyuk, D.V., Grain Boundary Sliding and Rotational Mechanisms of Intragranular Deformation at Different Creep Stages of High-Purity Aluminum Polycrystals at Various Temperatures and Stresses, Mater. Sci. Eng. A, 2018, vol. 733, pp. 276–284. https://doi.org/10.1016/j.msea.2018.07.038

    Article  Google Scholar 

  26. 26

    Raabe, D., Sachtleber, M., Weiland, H., Scheele, G., and Zhao, Z., Grain-Scale Micromechanics of Polycrystal Surfaces during Plastic Straining, Acta Mater., 2003, vol. 51, pp. 1539–1560. https://doi.org/10.1016/S1359-6454(02)00557-8

    ADS  Article  Google Scholar 

  27. 27

    Miranda-Medina, M.L., Somkuti, P., Bianchi, D., Cihak-Bayr, U., Bader, D., Jech, M., and Vernes, A., Characterisation of Orange Peel on Highly Polished Steel Surfaces, Surf. Eng., 2015, vol. 31, pp. 519–525.

    Article  Google Scholar 

  28. 28

    Stoudt, M.R., Levine, L.E., Creuziger, A., and Hubbard, J.B., The Fundamental Relationships between Grain Orientation, Deformation-Induced Surface Roughness and Strain Localization in an Aluminum Alloy, Mater. Sci. Eng. A, 2011, vol. 530, pp. 107–116. https://doi.org/10.1016/j.msea.2011.09.050

    Article  Google Scholar 

  29. 29

    Wouters, O., Vellinga, W.P., van Tijum, R., and De Hosson, J.T.M., Effects of Crystal Structure and Grain Orientation on the Roughness of Deformed Polycrystalline Metals, Acta Mater., 2006, vol. 54, pp. 2813–2821. https://doi.org/10.1016/j.actamat.2006.02.023

    ADS  Article  Google Scholar 

  30. 30

    Panin, V.E. and Panin, S.V., Mesoscale Plastic Deformation of Aluminum Polycrystals, Russ. Phys. J., 1997, vol. 40, no. 1, pp. 28–34.

    Article  Google Scholar 

  31. 31

    ISO 8785 Surface Imperfections—Terms, Definitions, and Parameters. International Organization for Standardization, Geneva, Switzerland, 1998.

  32. 32

    Kryvyi, P., Dzyura, V., Maruschak, P., Panin, S., Lyashuk, O., and Vlasov, I., Influence of Curvature and Cross-Sectional Shape of Cylindrical Surface Formed by Turning on Its Roughness, Arab. J. Sci. Eng., 2020, vol. 45, pp. 5615–5622. https://doi.org/10.1007/s13369-020-04512-8

    Article  Google Scholar 

  33. 33

    Li, Yu.V. and Barannikova, S.A., In Situ DIC Observation of Plastic Strain Increment in Low-Carbon Steel, Metallurgia, 2021, vol. 60, no. 1–2, pp. 55–58.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (Project No. 20-19-00600). Microstructural studies were carried out using the equipment of the shared use Analytical Center of Geochemistry of Natural Systems of Tomsk State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Romanova.

Additional information

We are deeply grateful to Prof. Schmauder for many years of research cooperation in the area of computational mechanics of materials and wish him success in the implementation of his innovative ideas in the future

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romanova, V.A., Balokhonov, R.R., Shakhidzhanov, V.S. et al. Evolution of Mesoscopic Deformation-Induced Surface Roughness and Local Strains in Tensile Polycrystalline Aluminum. Phys Mesomech 24, 570–577 (2021). https://doi.org/10.1134/S1029959921050088

Download citation

Keywords:

  • deformation-induced surface roughness
  • mesoscale
  • aluminum alloys
  • plastic strain localization