Skip to main content
Log in

Mechanical and Electrical Properties of Multiwalled Carbon Nanotube Nanocomposites with Different Resin Matrices

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Researchers have investigated the effects of different nanoenhancers on the physical properties of polymer-based nanocomposites. However, the effect of resin type on the properties of nanocomposites reinforced by multiwalled carbon nanotube (MWCNT) has not been studied very well. This study aims to understand the link between the nature of polymer as the base material for nanocomposite and the reinforcement role of MWCNT. Three common polymers, with high industrial applications, namely vinyl ester, polyester and epoxy were chosen. The standard tensile specimens were prepared for both neat and reinforced resins using 0.5 wt % of MWCNTs. The results indicated that while for the vinyl ester and polyester resins there was no improvement in the elastic modulus, for the epoxy resin the elastic modulus increases by 5.6% with addition of MWCNT. On the other hand, the electrical test results showed that electrical conductivity was greatly increased in the presence of MWCNT, for both vinyl ester and epoxy resins. But for the polyester resin, little improvement was observed with the addition of MWCNT. The mechanisms causing this trend were investigated. Moreover, several optical microscopy and scanning electron microscopy images were taken from the fracture surfaces to evaluate the surface features and fracture mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature, 1991, vol. 354, pp. 56–58.

    Article  ADS  Google Scholar 

  2. Thostenson, E.T. and Chou, T.W., On the Elastic Properties of Carbon Nanotube-Based Composites: Modeling and Characterization, J. Phys. D. Appl. Phys., 2003, vol. 36, pp. 573–582.

    Article  ADS  Google Scholar 

  3. Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M., Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes, Nature, 1996, vol. 381, pp. 678–681.

    Article  ADS  Google Scholar 

  4. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load, Science, 2000, vol. 287, pp. 637–640.

    Article  ADS  Google Scholar 

  5. Yu, M.F., Files, B.S., Arepalli, S., and Ruoff, R.S., Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Heir Mechanical Properties, Phys. Rev. Lett., 2000, vol. 84, pp. 5552–5555.

    Article  ADS  Google Scholar 

  6. Li, C. and Chou, T.W., Elastic Moduli of Multi-Walled Carbon Nanotubes and the Effect of van der Waals Forces, J. Compos. Sci. Technol., 2003, vol. 63, pp. 1517–1524.

    Article  Google Scholar 

  7. Peigney, A., Laurent, Ch., Flahaut, E., Bacsa, R.R., and Rousset, A., Specific Surface area of Carbon Nanotubes and Bundles of Carbon Nanotubes, Carbon, 2001, vol. 39, pp. 507–514.

    Article  Google Scholar 

  8. Andrews, R. and Weisenberger, M.C., Carbon Nanotube Polymer Composites, Current Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 31–37.

    Article  ADS  Google Scholar 

  9. Coleman, J.N., Khan, U., Blau, W.J., and Gun’ko, Y.K., Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites, Carbon, 2006, vol. 44, pp. 1624–1652.

    Article  Google Scholar 

  10. Berber, S., Kwon, Y.K., and Tomanek, D., Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett., 2000, vol. 84, pp. 4613–4616.

    Article  ADS  Google Scholar 

  11. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Georliga, L.J., and Dekker, C., Individual Single-Wall Carbon Nanotubes as Quantum Wires, Nature, 1997, vol. 386, pp. 474–477.

    Article  ADS  Google Scholar 

  12. Kasumov, A.Y., Deblock, R., Kociak, M., Reulet, B., Bouchiat, H., Khodos, I., Gorbatov, Yu.B., Volkov, V.T., Journet, C., and Burghard, M., Supercurrents Through Single-Walled Carbon Nanotubes, Science, 1999, vol. 284, pp. 1508–1511.

    Article  ADS  Google Scholar 

  13. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., and Schulte, K., Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study, Compos. Sci. Technol., 2005, vol. 65, pp. 2300–2313.

    Article  Google Scholar 

  14. Ayatollahi, M.R., Shadlou, S., and Shokrieh, M.M., Mixed Mode Brittle Fracture in Epoxy/Multi-Walled Carbon Nanotube Nanocomposites, Eng. Fract. Mech., 2011, vol. 78, pp. 2630–2632.

    Google Scholar 

  15. Thostenson, E.T., Ziaee, S., and Chou, T.-W., Processing and Electrical Properties of Carbon Nanotube/Vinyl Ester Nanocomposites, Compos. Sci. Technol., 2009, vol. 69, pp. 801–804.

    Article  Google Scholar 

  16. Battisti, A., Skordos, A.A., and Partridge, I.K., Monitoring Dispersion of Carbon Nanotubes in a Thermosetting Polyester Resin, Compos. Sci. Technol., 2009, vol. 69, pp. 1516–1520.

    Article  Google Scholar 

  17. Ayatollahi, M.R., Shadlou, S., and Shokrieh, M.M., Fracture Toughness of Epoxy/Multi-Walled Carbon Nanotube Nano-Composites under Bending and Shear Loading Conditions, Mater. Design, 2011, vol. 32, pp. 2115–2124.

    Article  Google Scholar 

  18. Liao, Sh.-H., Hsiao, M.-Ch., Yen, Ch.-Y., Ma, Ch.-Ch.M., Lee, Sh.-J., Su, A., Tsai, M.-Ch., Yen, M.-Y., and Liu, P.-L., Novel Functionalized Carbon Nanotubes as Cross-Links Reinforced Vinyl Ester/Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells, J. Power Sourc., 2010, vol. 195, pp. 7808–7817.

    Article  ADS  Google Scholar 

  19. Ratna, D., Handbook of Thermoset Resins, Shawbury, UK: iSmithers, 2009.

  20. Salamone, J.C., Polymeric Materials Encyclopedia, Boca Raton, FL: CRC Press, 1996.

  21. Dinesh Kumar, K. and Kothandaraman, B., Modification of (DGEBA) Epoxy Resin with Maleated Depolymerised Natural Rubber, Expr. Polym. Lett., 2008, vol. 2, pp. 302–311.

    Article  Google Scholar 

  22. Tuğrul Seyhan, A., Gojny, F.H., Tanoğlu, M., and Schulte, K., Critical Aspects Related to Processing of Carbon Nanotube/Unsaturated Thermoset Polyester Nanocomposites, Eur. Polymer J., 2007, vol. 43, pp. 374–379.

    Article  Google Scholar 

  23. Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D., Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite, Science, 1994, vol. 265, pp. 1212–1214.

    Article  ADS  Google Scholar 

  24. Schadler, L.S., Giannaris, S.C., and Ajayan, P.M., Load Transfer in Carbon Nanotube Epoxy Composites, Appl. Phys. Lett., 1998, vol. 73, no. 26, pp. 3842–3844.

    Article  ADS  Google Scholar 

  25. Wagner, H.D., Nanotube–Polymer Adhesion: A Mechanics Approach, Chem. Phys. Lett., 2002, vol. 361, pp. 57–61.

    Article  ADS  Google Scholar 

  26. Song, Y.S. and Youn, J.R., Influence of Dispersion States of Carbon Nanotubes on Physical Properties of Epoxy Nanocomposites, Carbon, 2005, vol. 43, pp. 1378–1385.

    Article  Google Scholar 

  27. Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M., and Schulte, K., Fundamental Aspects of Nano-Reinforced Composites, Compos. Sci. Technol., 2006, vol. 66, pp. 3115–3125.

    Article  Google Scholar 

  28. Lu, K.L., Lago, R.M., Chen, Y.K., Green, M.L.H., Harris, P.J.F., and Tsang, S.C., Mechanical Damage of Carbon Nanotubes by Ultrasound, Carbon, 1996, vol. 34, pp. 814–816.

    Article  Google Scholar 

  29. Shelimov, K.B., Esenaliev, R.O., Rinzler, A.G., Huffman, C.B., and Smalley, R.E., Purification of Single-Wall Carbon Nanotubes by Ultrasonically Assisted Filtration, Chem. Phys. Lett., 1998, vol. 282, pp. 429–434.

    Article  ADS  Google Scholar 

  30. Zare, Y. and Rhee, K.Y., A Modeling Approach for Young’s Modulus of Interphase Layers in Polymer Nanocomposites, Phys. Mesomech., 2020, vol. 23, no. 2, pp. 176–181. https://doi.org/10.1134/S1029959920020095

    Article  Google Scholar 

  31. Zare, Y. and Rhee, K.Y., Evaluation and Development of Expanded Equations Based on Takayanagi Model for Tensile Modulus of Polymer Nanocomposites Assuming the Formation of Percolating Networks, Phys. Mesomech., 2018, vol. 21, no. 6, pp. 351–357.

    Article  Google Scholar 

  32. Li, T., Zhao, G., Wang, G., Zhang, L., and Hou, J., Thermal-Insulation, Electrical, and Mechanical Properties of Highly-Expanded PMMA/MWCNT Nanocomposite Foams Fabricated by Supercritical CO2 Foaming, Macromolec. Mater. Eng., 2019, vol. 304, p. 1800789.

    Article  Google Scholar 

  33. Kim, Y., Kim, M., Choi, J.K., and Shim, S.E., Mechanical and Electrical Properties of PVA Nanocomposite Containing Sonochemically Modified MWCNT in Water, Polymer Korea, 2015, vol. 39, pp. 136–143.

    Article  Google Scholar 

  34. Tuğrul Seyhan, A., Tanoğlu, M., and Schulte, K., Tensile Mechanical Behavior and Fracture Toughness of MWCNT and DWCNT Modified Vinyl-Ester/Polyester Hybrid Nanocomposites Produced by 3-Roll Milling, J. Mater. Sci. Eng. A, 2009, vol. 523, pp. 85–92.

    Article  Google Scholar 

  35. Ci, L. and Bai, J.B., The Reinforcement Role of Carbon Nanotubes in Epoxy Composites with Different Matrix Stiffness, J. Compos. Sci. Technol., 2006, vol. 66, pp. 599–603.

    Article  Google Scholar 

  36. Battisti, A., Skordos, A.A., and Partridge, I.K., Monitoring Dispersion of Carbon Nanotubes in a Thermosetting Polyester Resin, Compos. Sci. Technol., 2009, vol. 69, pp. 1516–1520.

    Article  Google Scholar 

  37. Battisti, A., Skordos, A.A., and Partridge, I.K., Percolation Threshold of Carbon Nanotubes Filled Unsaturated Polyesters, Compos. Sci. Technol., 2010, vol. 70, pp. 633–637.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ayatollahi.

Additional information

Translated from in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 5, pp. 104–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samankan, S., Ayatollahi, M.R. & Shadlou, S. Mechanical and Electrical Properties of Multiwalled Carbon Nanotube Nanocomposites with Different Resin Matrices. Phys Mesomech 24, 219–224 (2021). https://doi.org/10.1134/S1029959921020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921020120

Keywords:

Navigation