Skip to main content
Log in

Ductile Failure Prediction of U-Notched Bainitic Functionally Graded Steel Specimens Using the Equivalent Material Concept Combined with the Averaged Strain Energy Density Criterion

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this paper, the ductile fracture of bainitic functionally graded steel has been studied. Fracture tests was performed on U-notched specimens made of bainitic functionally graded steel under mode I. The averaged strain energy density criterion combined with equivalent material concept was employed to predict the ductile fracture of bainitic functionally graded steel. For this purpose, first, based on equivalent material concept, the mechanical properties of virtual brittle functionally graded steel were obtained. Then the averaged value of strain energy density over a well-defined control volume was calculated by finite element analysis for U-notched virtual brittle functionally graded steel. After that, the fracture loads was obtained based on the averaged strain energy density criterion. The agreement between experimental fracture loads and theoretical predictions was good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rice, J.R., Some Remarks on Elastic Crack-Tip Stress Fields, Int. J. Solids Struct., 1972, vol. 8, pp. 751–758. doi https://doi.org/10.1016/0020-7683(72)90040-6

    Article  MATH  Google Scholar 

  2. Rousseau, C.E. and Tippur, H.V., Evaluation of Crack tip Fields and Stress Intensity Factors in Functionally Graded Elastic Materials: Cracks Parallel to Elastic Gradient, Int. J. Fract., 2002, vol. 114, pp. 87–112. doi https://doi.org/10.1023/a:1014889628080

    Article  Google Scholar 

  3. Filippi, S., Lazzarin, P., and Tovo, R., Developments of Some Explicit Formulas Useful to Describe Elastic Stress Fields Ahead of Notches in Plates, Int. J. Solids Struct., 2002, vol. 39, pp. 4543–4565. doi https://doi.org/10.1016/S00207683(02)00342-6

    Article  MATH  Google Scholar 

  4. Pook, L.P., Berto, F., and Campagnolo, A., State of the Art of Corner Point Singularities under In-Plane and Out-of-Plane loading, Eng. Fract. Mech., 2017, vol. 174, pp. 2–9. doi https://doi.org/10.1016/j.engfracmech.2016.10.001

    Article  Google Scholar 

  5. Lin, T., Evans, A.G., and Ritchie, R.O., Statistical Analysis of Cleavage Fracture Ahead of Sharp Cracks and Rounded Notches, Acta Metall., 1986, vol. 34, pp. 2205–2216. doi https://doi.org/10.1016/0001-6160(86)90166-5

    Article  Google Scholar 

  6. Novozhilov, V.V., On a Necessary and Sufficient Criterion for Brittle Strength, J. Appl. Math. Mech., 1969, vol. 33, pp. 201–210. doi https://doi.org/10.1016/0021-8928(69)90025-2

    Article  Google Scholar 

  7. Seweryn, A., Brittle Fracture Criterion for Structures with Sharp Notches, Eng. Fract. Mech., 1994, vol. 47, pp. 673–681. doi https://doi.org/10.1016/0013-7944(94)90158-9

    Article  Google Scholar 

  8. Taylor, D., Predicting the Fracture Strength of Ceramic Materials Using the Theory of Critical Distances, Eng. Fract. Mech., 2004, vol. 71, pp. 2407–2416. doi https://doi.org/10.1016/j.engfracmech.2004.01.002

    Article  Google Scholar 

  9. Leguillon, D., A Criterion for Crack Nucleation at a Notch in Homogeneous Materials, Comptes Rendus l’Academie Des Sci. IIB Mech., 2001, vol. 329, pp. 97–102. doi https://doi.org/10.1016/S1620-7742(01)01302-2

    ADS  MATH  Google Scholar 

  10. Gomez, F.J., Elices, M., and Planas, J., The Cohesive Crack Concept: Application to PMMA at −60°C, Eng. Fract. Mech., 2005, vol. 72, pp. 1268–1285. doi https://doi.org/10.1016/j.engfracmech.2004.09.005

    Article  Google Scholar 

  11. Elices, M., Guinea, G.V., Gomez, J., and Planas, J., The Cohesive Zone Model: Advantages, Limitations and Challenges, Eng. Fract. Mech., 2002, pp. 137–163. doi https://doi.org/10.1016/S0013-7944(01)00083-2

    Google Scholar 

  12. Ayatollahi, M.R. and Torabi, A.R., Investigation of Mixed Mode Brittle Fracture in Rounded-Tip V-Notched Components, Eng. Fract. Mech., 2010, vol. 77, pp. 3087–3104. doi https://doi.org/10.1016/j.engfracmech.2010.07.019

    Article  Google Scholar 

  13. Oh, C.-K., Kim, Y.-J., Baek, J.-H., Kim, Y.-P., and Kim, W.-S., Ductile Failure Analysis of API X65 Pipes with Notch-Type Defects Using a Local Fracture Criterion, Int. J. Press. Vessel. Pip., 2007, vol. 84, pp. 512–525. doi https://doi.org/10.1016/j.ijpvp.2007.03.002

    Article  Google Scholar 

  14. Berto, F. and Lazzarin, P., Recent Developments in Brittle and Quasi-Brittle Failure Assessment of Engineering Materials by Means of Local Approaches, Mater. Sci. Eng. R Rep., 2014, vol. 75, pp. 1–48. doi https://doi.org/10.1016/j.mser.2013.11.001

    Article  Google Scholar 

  15. Torabi, A.R., Campagnolo, A., and Berto, F., Local Strain Energy Density to Predict Mode II Brittle Fracture in Brazilian Disk Specimens Weakened by V-Notches with End Holes, Mater. Des., 2015, vol. 69, pp. 22–29.

    Article  Google Scholar 

  16. Lazzarin, P., Berto, F., and Ayatollahi, M.R., Brittle Failure of Inclined Key-Hole Notches in Isostatic Graphite under In-Plane Mixed Mode Loading, Fatig. Fract. Eng. Mater. Struct., 2013, vol. 36, pp. 942–955. doi https://doi.org/10.1111/ffe.12057

    Article  Google Scholar 

  17. Torabi, R., Estimation of Tensile Load-Bearing Capacity of Ductile Metallic Materials Weakened by a V-Notch: The Equivalent Material Concept, Mater. Sci. Eng. A, 2012, vol. 536, pp. 249–255. doi https://doi.org/10.1016/j.msea.2012.01.007

    Article  Google Scholar 

  18. Torabi, R., Berto, F., Campagnolo, A., and Akbardoost, J., Averaged Strain Energy Density Criterion to Predict Ductile Failure of U-Notched Al 6061-T6 Plates under Mixed Mode Loading, Theor. Appl. Fract. Mech., 2017, vol. 91, pp. 86–93. doi https://doi.org/10.1016/j.tafmec.2017.04.010

    Article  Google Scholar 

  19. Marsavina, L., Berto, F., Negru, R., Serban, D.A., and Linul, E., An Engineering Approach to Predict Mixed Mode Fracture of PUR Foams Based on ASED and Micromechanical Modelling, Theor. Appl. Fract. Mech., 2017, vol. 91, pp. 148–154. doi https://doi.org/10.1016/j.tafmec.2017.06.008

    Article  Google Scholar 

  20. Berto, F., Campagnolo, A., and Welo, T., Local Strain Energy Density to Assess the Multiaxial Fatigue Strength of Titanium Alloys, Fract. Struct. Integr., 2016, pp. 69–79.

    Google Scholar 

  21. Mohammadi, H., Salavati, H., Alizadeh, Y., Abdullah, A., and Berto, F., Fracture Investigation of U-Notch Made of Tungsten-Copper Functionally Graded Materials by Means of Strain Energy Density, Fatig. Fract. Eng. Mater. Struct., 2017. doi https://doi.org/10.1111/ffe.12616

    Google Scholar 

  22. Salavati, H., Mohammadi, H., Yusefi, A., and Berto, F., Fracture Assessment of V-Notched Specimens with End Holes Made of Tungsten-Copper Functionally Graded Material under Mode I Loading, Theor. Appl. Fract. Mech., 2017. doi https://doi.org/10.1016/j.tafmec.2017.06.013

    Google Scholar 

  23. Salavati, H., Alizadeh, Y., and Berto, F., Fracture Assessment of Notched Bainitic Functionally Graded Steels under Mixed Mode (I + II) Loading, Phys. Mesomech., 2015, vol. 18, no. 4, pp. 307–325.

    Article  Google Scholar 

  24. Mehran, S., Rouhi, S., Ramzani, B., and Barati, E., Fracture Analysis of Functionally Graded Materials with U- and V-Notches under Mode I Loading Using the Averaged Strain-Energy Density Criterion, Fatig. Fract. Eng. Mater. Struct., 2012, vol. 35, pp. 614–627. doi https://doi.org/10.1111/j.1460-2695.2011.01655.x

    Article  Google Scholar 

  25. Nazari, A., Mohandesi, J.A., and Riahi, S., Modified Modeling Fracture Toughness of Functionally Graded Steels in Crack Divider Configuration, Int. J. Damage Mech., 2011, vol. 20, pp. 811–830. doi https://doi.org/10.1177/1056789510382851

    Article  Google Scholar 

  26. Yosibash, Z., Bussiba, A., and Gilad, I., Failure Criteria for Brittle Elastic Materials, Int. J. Fract., 2014, vol. 125, pp. 307–333. doi https://doi.org/10.1023/B:FRAC.0000022244.31825.3b.

    Article  MATH  Google Scholar 

  27. Barati, E., Aghazadeh Mohandesi, J., and Alizadeh, Y., The Effect of Notch Depth on J-Integral and Critical Fracture Load in Plates Made of Functionally Graded Aluminum-Silicone Carbide Composite with U-Notches under Bending, Mater. Des., 2010, vol. 31, pp. 4686–4692. doi https://doi.org/10.1016/j.matdes.2010.05.025

    Article  Google Scholar 

  28. Torabi, R., Campagnolo, A., and Berto, F., Mixed mode I/II Crack Initiation from U-Notches in Al 7075-T6 Thin Plates by Large-Scale Yielding Regime, Theor. Appl. Fract. Mech., 2016. doi https://doi.org/10.1016/j.tafmec.2016.08.002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Salavati.

Additional information

Russian Text © The Author(s), 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 4, pp. 79–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salavati, H., Mohammadi, H. Ductile Failure Prediction of U-Notched Bainitic Functionally Graded Steel Specimens Using the Equivalent Material Concept Combined with the Averaged Strain Energy Density Criterion. Phys Mesomech 22, 255–260 (2019). https://doi.org/10.1134/S102995991903010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995991903010X

Keywords

Navigation