Skip to main content
Log in

Lattice Curvature and Mesoscopic Strain-Induced Defects as the Basis of Plastic Deformation in Ultrafine-Grained Metals

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Here, in the context of space, time, and energy, we analyze the nanoscale mesosubstructure of ultrafinegrained nickel and copper after equal channel angular pressing and subsequent rolling and its changes after lowtemperature annealing. The analysis, including scanning tunnel microscopy and positron lifetime spectroscopy, shows that the basis for plastic deformation in such materials is provided by their lattice curvature and associated nanoscale mesoscopic strain-induced defects. Under equal channel angular pressing and rolling, for example, these structural elements increase the role of nonequilibrium point defects, plastic distortion, and low-angle subboundaries. We also analyze the energy of internal interfaces (grain boundaries) estimated from dihedral angles of etch grooves of different scales and their relative energy from cumulative energy distribution functions. In ultrafinegrained nickel, the integral energy distribution function is Gaussian both after equal channel angular and rolling and after further low-temperature annealing, and this is because of the presence of low-angle subboundaries. In ultrafine-grained copper, the integral energy distribution function is Gaussian after equal channel angular pressing and rolling, and after low-temperature annealing it assumes a power form because of the absence of lattice curvature and low-angle subboundaries. Both metals reveal vacancy clusters due to their lattice curvature and to dissolved low-angle subboundaries. In ultrafine-grained copper at T> 180°C, dynamic recrystallization occurs as nonequilibrium low-angle subboundaries inside nanograins are dissolved. It is the lattice curvature that controls the formation and evolution of mesoscopic substructures on different scales under low-temperature annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tyumentsev, A.N., Ditenberg, I.A., Korotaev, A.D., and Denisov, K.I., Lattice Curvature Evolution in Metal Materials on Meso–and Nanostructural Scales of Plastic Deformation, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 319–334. doi 10.24411/1683–805X–2013–00015

    Article  Google Scholar 

  2. Kozlov, E.V., Koneva, N.A., and Trishkina, L.I., Dislocation–Disclination Substructures Formed in FCC Polycrystals under Large Plastic Deformation: Evolution and Association with Flow Stress, Russ. Phys. J., 2014, vol. 57, no. 2, pp. 179–186.

    Article  Google Scholar 

  3. Panin, V.E., Egorushkin, V.E., Elsukova, T.F., Surikova, N.S., Pochivalov, Y.I., and Panin, A.V., Multiscale Translation–Rotation Plastic Flow in Polycrystals. Handbook of Mechanics of Materials, C.H. Hsuch et al., Eds., Singapore: Springer Nature, 2018. doi 10.1007/978–981–10–6855–3 77–1

    Google Scholar 

  4. Panin, V.E., Egorushkin, V.E., Surikova, N.S., and Pochivalov, Yu.I., Shear Bands as Translation–Rotation Mode of Plastic Deformation in Solids under Alternate Bending, Mater. Sci. Eng. A, 2017, vol. 703, pp. 451–460.

    Article  Google Scholar 

  5. Egorushkin, V.E. and Panin, V.E., Physical Foundations of Nonlinear Fracture Mechanics, Mech. Solids, 2013, vol. 48, no. 5, pp. 525–536.

    Article  ADS  Google Scholar 

  6. Panin, V.E., Moiseenko, D.D., Maksimov, P.V., and Panin, S.V., Effects of Plastic Distortion in the Lattice Curvature Zone of a Crack Tip, Phys. Mesomech., 2017, vol. 20, no. 3, pp. 280–290. doi 10.24411/1683–805X–2017–00025

    Article  Google Scholar 

  7. URL http: //gwyddion.net/[electronic resource].

  8. Mullins, W.W., Theory of Thermal Grooving, J. Appl. Phys, 1957, vol. 28, no. 3, pp. 333–339.

    Article  ADS  Google Scholar 

  9. Bordulev, Yu.S., Laptev, R.S., Garanin, G.V., and Lider, A.M., Optimization of Positron Lifetime Spectroscopy for Materials Research, Sovrem. Naukoem. Tekhnol., 2013, no. 8(2), pp. 184–189.

    Google Scholar 

  10. Giebel, D. and Kansy. J., LT10 Program for Solving Basic Problems Connected with Defect Detection, Phys. Proc., 2012, vol. 35, pp. 122–127.

    Article  ADS  Google Scholar 

  11. Kuznetsov, P.V., Mironov, Yu.P., Tolmachev, A.I., Bordulev, Yu.S., Laptev, R.S., Lider, A.M., and Korznikov, A.V., Positron Spectroscopy of Defects in Submicrocrystalline Nickel After Low–Temperature Annealing, Phys. Sol–id State, 2015, vol. 57, no. 2, pp. 219–228.

    Article  ADS  Google Scholar 

  12. Cizek, J., Prochazka, I., Cieslar, M., Stulikova, I., Chmelik, F., and Islamgaliev, R.K., Positron–Lifetime Investigation of Thermal Stability of Ultra–Fine Grained Nickel, Phys. Stat. Sol. A, 2002, vol. 191, no. 2, pp. 391–408.

    Article  ADS  Google Scholar 

  13. Staab, T.E.M., Krause–Rehberg, R., and Kieback, B., Review Positron Annihilation in Fine–Grained Materials and Fine Powders––An Application to the Sintering of Metal Powders, J. Mater. Sci., 1999, vol. 34, pp. 3833–3851.

    Article  ADS  Google Scholar 

  14. Cheremskoy, P.G., Slezov, V.V., and Betekhtin, V.I., Pores in Solids, Moscow: Energoatomizdat, 1990.

    Google Scholar 

  15. Puska, M.J. and Nieminen, R.M., Defect Spectroscopy with Positrons: a General Calculational Method, J. Phys. F, 1983, vol., 13, pp. 333–346.

    Google Scholar 

  16. Dederichs, P.H., Lehmann, C., Schober, H.R., Scholz, A., and Zeller, R., Lattice Theory of Point Defects, J. Nucl. Mater., 1978, vol. 69–70, pp. 176–199.

    Article  Google Scholar 

  17. Kuznetsov, P.V., Lider, A.M., Bordulev, Y.S., Laptev, R.S., Mironov, Y.P., Rakhmatulina, T.V., and Korznikov, A.V., Positron Annihilation Spectroscopy of Vacancy Type Defects in Submicrocrystalline Copper Under Annealing, AIP Conf. Proc., 2016, vol. 1783, p. 020126, doi 10.1063/1.4966419

    Article  Google Scholar 

  18. Cizek, J., Prochazka, I., Cieslar, M., Kuzel, R., Kuriplach, J., Chmelik, F., Stulikova, I., Beevár, F., Melikhova, O., and Islamgaliev, R.K., Thermal Stability of Ultrafine Grained Copper, Phys. Rev. B, 2002, vol. 65, pp. 094106(1–16).

    Article  ADS  Google Scholar 

  19. McKee, B.T.A., Saimoto, S., Stewart, A.T., and Stott, M.J., Positron Trapping at Dislocations in Copper, Can. J. Phys., 1974, vol. 52, pp. 759–765.

    Article  ADS  Google Scholar 

  20. Molodova, X., Gottstein, G., Winning, M. and Hellmig, R.J., Thermal Stability of ECAP Processed Pure Copper, Mater. Sci. Eng. A, 2007, vol. 460–461, pp. 204–213.

    Article  Google Scholar 

  21. Guzev, M.A. and Dmitriev, A.A., Bifurcational Behavior of Potential Energy in a Particle System, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 287–293.

    Article  Google Scholar 

  22. Dobatkin, S.V., Zrník, J., and Mamuzic, I., Nanostructures by Severe Plastic Deformation of Steels: Advantages and Problems, Metallurgy, 2006, vol. 45, no. 4, pp. 313–321.

    Google Scholar 

  23. Pabel, F., Machado, J., and Ney Luiggi, A., Study of Electronic Properties of A Ti, AlTi and AlTig Intermetallic Compounds Using DFT–FPLAPW, J. Comput. Meth. Sci. Eng., 2014, vol. 14, pp. 53–71.

    Google Scholar 

  24. Golovnev, I.F., Golovneva, E.I., Merzhievsky, L.A., Fomin, V.M., and Panin, V.E., Molecular Dynamics Study of Cluster Structure and Rotational Wave Properties in Solid–State Nanostructures, Phys. Mesomech., 2015, vol. 18, no. 3, pp. 179–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kuznetsov.

Additional information

Original Russian Text © V.E. Panin, P.V. Kuznetsov, T.V. Rakhmatulina, 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 3, pp. 27–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, V.E., Kuznetsov, P.V. & Rakhmatulina, T.V. Lattice Curvature and Mesoscopic Strain-Induced Defects as the Basis of Plastic Deformation in Ultrafine-Grained Metals. Phys Mesomech 21, 411–418 (2018). https://doi.org/10.1134/S1029959918050053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959918050053

Keywords

Navigation