Localized heat perturbation in harmonic 1D crystals: Solutions for the equation of anomalous heat conduction


In this paper exact analytical solutions for the equation that describes anomalous heat propagation in a harmonic 1D lattices are obtained. Rectangular, triangular and sawtooth initial perturbations of the temperature field are considered. The solution for an initially rectangular temperature profile is investigated in detail. It is shown that the decay of the solution near the wavefront is proportional to \(1/\sqrt t \). In the center of the perturbation zone the decay is proportional to 1/t. Thus, the solution decays slower near the wavefront, leaving clearly visible peaks that can be detected experimentally.

This is a preview of subscription content, log in to check access.


  1. 1.

    Zhang, X., Luo, D., Cui, G., Wang, Y., and Huang, B., Construction of Logic Gate Based on Multi-Channel Carbon Nanotube Field-Effect Transistors, Proc. of III Int. Conf. Intelligent Human-Machine Systems and Cybernetics, Aug. 2011, 2011, vol. 2, pp. 94–97.

    ADS  Google Scholar 

  2. 2.

    Chen, Ch., Jin, T., Wei, L., Li, Y., Liu, X., Wang, Y., Zhang, L., Liao, Ch., Hu, N., Song, Ch., and Zhang, Y., High-Work-Function Metal/Carbon Nanotube/Low-Work-Function Metal Hybrid Junction Photovoltaic Device, NPG Asia Mater., 2015, vol. 7, p. e220.

    Article  Google Scholar 

  3. 3.

    Goldstein, R.V. and Morozov, N.F., Mechanics of Deformation and Fracture of Nanomaterials and Nanotechnology, Phys. Mesomech., 2007, vol. 10, no. 5-6, pp. 235–246.

    Article  Google Scholar 

  4. 4.

    Li, B., Wang, L., and Casati, G., Thermal Diode: Rectification of Heat Flux, Phys. Rev. Lett., 2004, vol. 93, p. 184–301.

    Google Scholar 

  5. 5.

    Brown, E., Hao, L., Gallop, J.C., and Macfarlane, J.C., Ballistic Thermal and Electrical Conductance Measurements on Individual Multiwall Carbon Nanotubes, Appl. Phys. Lett., 2005, vol. 87, no. 2, p. 023107.

    ADS  Article  Google Scholar 

  6. 6.

    Wang, Zh., Carter, J.A., Lagutchev, A., KanKoh, Y., Seong, N.-H., Cahill, D.G., and Dlott, D.D., Ultrafast Flash Thermal Conductance of Molecular Chains, Science, 2007, vol. 317, no. 5839, pp. 787–790.

    ADS  Article  Google Scholar 

  7. 7.

    Cannon, J.R., The One-Dimensional Heat Equation, Cambridge: Cambridge University Press, 1984.

    Google Scholar 

  8. 8.

    Lepri, S., Livi, R., and Politi, A., Thermal Conduction in Classical Low-Dimensional Lattices, Phys. Rep., 2003, pp. 1–80.

    Google Scholar 

  9. 9.

    Hsiao, T.-K., Chang, H.-K., Liou, Sz-Ch., Chu, M.-W., Lee, Si-Ch., and Chang, Ch.-W., Observation of Room-Temperature Ballistic Thermal Conduction Persisting over 8.3 jam in SiGe Nanowires, Nat. Nanotech., 2013, vol. 8, no. 7, pp. 534–538.

    ADS  Article  Google Scholar 

  10. 10.

    Zhang, H., Hua, Ch., Ding, D., and Minnich, A.J., Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures, Sci. Rep., 2015, vol. 5, p. 9121.

    ADS  Article  Google Scholar 

  11. 11.

    Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., and Zettl, A., Breakdown of Fourier’s Law in Nanotube Thermal Conductors, Phys. Rev. Lett., 2008, vol. 101, p. 075903.

    ADS  Article  Google Scholar 

  12. 12.

    Rieder, Z., Lebowitz, J.L., and Lieb, E., Properties of a Harmonic Crystal in a Stationary Nonequilibrium State, J. Math. Phys., 1967, vol. 8, no. 5. pp. 1073–1078.

    ADS  Article  Google Scholar 

  13. 13.

    Cattaneo, C., Sur une Forme de L’équation de la Chaleur Eliminant le Paradoxe d’ une Propagation Instantanee, Comptes Rendus, 1958, vol. 247, pp. 431–433.

    MATH  Google Scholar 

  14. 14.

    Vernotte, P., Les Paradoxes de la Theorie Continue de L’équation de la Chaleur, Comptes Rendus, 1958, vol. 246, pp. 3154–3155.

    MATH  Google Scholar 

  15. 15.

    Gendelman, O.V. and Savin, A.V., Nonstationary Heat Conduction in One-Dimensional Chains with Conserved Momentum, Phys. Rev. E, 2010, vol. 81, p. 020103.

    ADS  Article  Google Scholar 

  16. 16.

    Krivtsov, A.M., Energy Oscillations in a One-Dimensional Crystal, Dokl. Phys., 2014, vol. 59, no. 9, pp. 427–430.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Krivtsov, A.M., Heat Transfer in Infinite Harmonic One Dimensional Crystals, Dokl. Phys., 2015, vol. 60, no. 9, pp. 407–411.

    ADS  Article  Google Scholar 

  18. 18.

    Krivtsov, A.M., On Unsteady Heat Conduction in a Harmonic Crystal, ArXivPreprint, 2015, p. 1509.02506.

    Google Scholar 

  19. 19.

    Babenkov, M.B., Krivtsov, A.M., and Tsvetkov, D.V., Energy Oscillations in a One-Dimensional Harmonic Crystal on an Elastic Substrate, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 282–290.

    Article  Google Scholar 

  20. 20.

    Kuzkin, V.A. and Krivtsov, A.M., An Analytical Description of Transient Thermal Processes in Harmonic Crystals, Phys. Solid State, 2017, vol. 59, no. 5, pp. 1051–1062.

    ADS  Article  Google Scholar 

  21. 21.

    Poletkin, K.V., Gurzadyan, G.G., Shang, J., and Kulish, V., Ultrafast Heat Transfer on Nanoscale in Thin Gold Films, Appl. Phys. B, 2012, vol. 107, no. 1, pp. 13–143.

    Article  Google Scholar 

  22. 22.

    Polyanin, A.D. and Nazaikinskii, V.E., Handbook of Linear Partial Differential Equationsfor Engineers and Scientists, Boca Raton: Chapman and Hall/CRC, 2016.

    Google Scholar 

  23. 23.

    Müller, I. and Müller, W.H., Fundamentals of Thermodynamics and Applications with Historical Annotations and Many Citations from Avogadro to Zermelo, Berlin: Springer, 2011.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Sokolov.

Additional information

Original Russian Text © A.A. Sokolov, A.M. Krivtsov, W.H. Müller, 2017, published in Fizicheskaya Mezomekhanika, 2017, Vol. 20, No. 3, pp. 63–68.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.A., Krivtsov, A.M. & Müller, W.H. Localized heat perturbation in harmonic 1D crystals: Solutions for the equation of anomalous heat conduction. Phys Mesomech 20, 305–310 (2017). https://doi.org/10.1134/S1029959917030067

Download citation


  • heat conduction
  • harmonic crystals
  • one dimensional crystals
  • localized excitations
  • anomalous heat conduction