Skip to main content
Log in

Scaling effect on the mixed-mode fracture path of rock materials

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this paper, a new approach is presented to predict the crack growth path in the rock materials by taking into account the size effect. The proposed approach is an incremental method in which the crack initiation angle for each step is determined from the modified forms of the maximum tangential stress criterion. These modified maximum tangential stress criteria take into account the influence of the higher order terms of the stress series at the crack tip in addition to the singular terms. As an important parameter in the proposed method, the critical distance r c is also assumed to be size dependent. Finally the incremental method is evaluated by experimental results obtained from Guiting limestone and CJhorveh marble specimens reported in the previous studies. It is shown that the proposed approach can predict the fracture trajectory of cracked specimens with different sizes in good agreement with the experimental results when three terms of Williams series expansion are considered for characterizing the stress field around the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

half-crack length in CCCD specimen

A 3, B 3 :

constant coefficients of the third terms in the Williams series expansion

A 3*, B 3*:

non-dimensional forms of A 3 and B 3

CCCD:

center cracked circular disk specimen

f t :

tensile strength

FEOD:

finite element over-deterministic method

FPZ:

fracture process zone

K I :

mode I stress intensity factor

K II :

mode II stress intensity factor

K I*, K II*:

non-dimensional forms of K I and K II

K If :

mode I fracture resistance

MTS:

maximum tangential stress criterion

P :

applied load

P u :

fracture load

R :

radius of CCCD specimens

r, θ:

crack tip coordinate

r c :

critical distance around crack tip

SCB:

semi-circular bend specimen

SED:

strain energy density criterion

T :

T-stress

T*:

non-dimensional form of T

t :

specimen thickness

XFEM:

extended finite element method

α:

crack inclination angle

σθθ :

tangential stress around the crack tip

θ0 :

fracture initiation angle

References

  1. Erdogan, F. and Sih, G.C., On the Crack Extension in Plates under Plane Loading and Transverse Shear, J. Basic Eng. Trans. ASME, 1963, vol. 85, pp. 519–525.

    Article  Google Scholar 

  2. Sih, G.C., Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems, Int. J. Fract., 1974, vol. 10, pp. 305–321.

    Article  Google Scholar 

  3. Hussain, M.A., Pu, S.L., and Underwood, J., Strain Energy Release Rate for a Crack under Combined Mode I and Mode II Fracture Analysis, ASTMSTP 560 American Society for Testing and Materials, Philadelphia, 1974, pp. 2–28.

    Google Scholar 

  4. Gdoutos, E.E. and Zacharopoulos, D.A., Mixed-Mode Crack Growth in Plates under Three-Point Bending, Exp. Mech, 1987, vol. 27, pp. 366–369.

    Article  Google Scholar 

  5. Bazant, Z.P. and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials, Boca Raton: CRC Press, 1998.

    Google Scholar 

  6. Al-Shayea, N.A., Crack Propagation Trajectories for Rocks under Mixed Mode I-II Fracture, Eng. Geol., 2005, vol. 81, pp. 84–97.

    Article  Google Scholar 

  7. Chong, K.P. and Kuruppu, M.D., New Specimen for Fracture Toughness Determination for Rock and Other Materials, Int. J. Fract. R, 1984, vol. 26, pp. 59–62.

    Article  Google Scholar 

  8. Khan, K. and Al-Shayea, N.A., Effect of Specimen Geometry and Testing Method on Mixed Mode I-II Fracture Toughness of a Limestone Rock from Saudi Arabia, Rock Mech. Rock Eng., 2000, vol. 33, pp. 179–206.

    Article  Google Scholar 

  9. Kuruppu, M.D., Obara, Y, Ayatollahi, M.R., Chong, K.P., and Funatsu, T., ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semicircular Bend Specimen, Rock Mech. Rock Eng., 2014, vol. 47, pp. 267–274.

    Article  ADS  Google Scholar 

  10. Lim, I.L., Johnston, I.W., Choi, S.K., and Boland, J.N., Fracture Testing of a Soft Rock with Semi-Circular Specimens under Three-Point Bending. Part 2. Mixed-Mode, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1994, vol. 31, pp. 199–212.

    Article  Google Scholar 

  11. Aliha, M.R.M., Ayatollahi, M.R., and Kharrazi, B., Numerical and Experimental Investigation of Mixed Mode Fracture in Granite Using Four Point Bend. Damage and Fracture Mechanics, Springer, 2009, pp. 275–283.

    Google Scholar 

  12. Ingraffea, A.R., Mixed Mode Fracture Initiation in Indiana Limestone and Westerly Granite, Proc. 22nd USSymp. on Rock Mechanics, Cambridge, MA, 1981, pp. 186–191.

    Google Scholar 

  13. Lin, Q., Fakhimi, A., Haggerty, M., and Labuz, J.F., Initiation of Tensile and Mixed-Mode Fracture in Sandstone, Int. J. Rock Mech. Mining Sci., 2009, vol. 46, pp. 489–497.

    Article  Google Scholar 

  14. Atkinson, C., Smelser, R.E., and Sanchez, J., Combined Mode Fracture via the Cracked Brazilian Disc Test, Int. J. Fract., 1982, vol. 18, pp. 279–291.

    Google Scholar 

  15. Awaji, H. and Sato, S., Combined Mode Fracture Toughness Measurement by the Disc Test, J. Eng. Mater. Technol, 1978, vol. 100, pp. 175–182.

    Article  Google Scholar 

  16. Chang, S.H., Lee, C.I., and Jeon, S., Measurement of Rock Fracture Toughness under Modes I and II and Mixed-Mode Conditions by Using Disc-Type Specimens, Eng. Geol., 2002, vol. 66, pp. 79–97.

    Article  Google Scholar 

  17. Ouchterlony, F., ISRM Suggested Methods for Determining Fracture Toughness of Rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1988, vol. 25, pp. 71–96.

    Google Scholar 

  18. Shetty, D.K., Rosenfield, A.R., and Duckworth, W.H., Mixed-Mode Fracture in Biaxial Stress State: Application of the Diametral-Compression (Brazilian Disk) Test, Eng. Fract. Mech., 1987, vol. 26, pp. 825–840.

    Article  Google Scholar 

  19. Richard, H.A. and Benitz, K., A Loading Device for the Creation of Mixed Mode in Fracture Mechanics, Int. J. Fract. R, 1983, vol. 22, pp. 55–58.

    Article  Google Scholar 

  20. Zipf, R.K. and Bieniawski, Z.T., Mixed Mode Testing for Fracture Testing of Coal Based on Critical Energy Density, in Proc. 27th US Rock Mechanics Symp., 1986, pp. 16–23.

    Google Scholar 

  21. Aliha, M.R.M., Hosseinpour, G.R., and Ayatollahi, M.R., Using a New Tensile-Shear Cracked Specimen for Investigating Fracture Behavior of Rock Materials, Rock Mech. Rock Eng., 2013, vol. 46, pp. 1023–1034.

    Article  ADS  Google Scholar 

  22. Rao, Q., Sun, Z., Stephansson, O., Li, C., and Stillborg, B., Shear Fracture (Mode II) of Brittle Rock, Int. J. Rock Mech. Min. Sci., 2003, vol. 40, pp. 355–375.

    Article  Google Scholar 

  23. Biolzi, L., Mixed Mode Fracture in Concrete Beams, Eng. Fract. Mech., 1990, vol. 35, pp. 187–193.

    Article  Google Scholar 

  24. Zhu, W.C. and Tang, C.A., Numerical Simulation on Shear Fracture Process of Concrete Using Mesoscopic Mechanical Model, Constr. Build. Mater., 2002, vol. 16, pp. 453–463.

    Article  Google Scholar 

  25. Lens, L.N., Bittencourt, E., and d’Avila, V.M.R., Constitutive Models for Cohesive Zones in Mixed-Mode Fracture of Plain Concrete, Eng. Fract. Mech., 2009, vol. 76, pp. 2281–2297.

    Article  Google Scholar 

  26. Xu, Y. and Yuan, H., Applications ofNormal Stress Dominated Cohesive Zone Models for Mixed-Mode Crack Simulation Based on Extended Finite Element Methods, Eng. Fract. Mech., 2011, vol. 78, pp. 544–558.

    Article  Google Scholar 

  27. Bazant, Z.P., Size Effect in Blunt Fracture: Concrete, Rock, Metal, J. Eng. Mech., 1984, vol. 110, pp. 518–535.

    Article  Google Scholar 

  28. Karihaloo, B.L., Size Effect in Shallow and Deep Notched Quasi-Brittle Structures, Int. J. Fract., 1999, vol. 95, pp. 379–390.

    Article  Google Scholar 

  29. Carpinteri, A., Interaction Between Tensile Strength Failure and Mixed Mode Crack Propagation in Concrete, Mat. Struct., 1988, vol. 21, pp. 403–409.

    Article  Google Scholar 

  30. Jenq, Y.S. and Shah, S.P., A Two Parameter Fracture Model for Concrete, J. Eng. Mech., 1985, vol. 111, pp. 1227–1241.

    Article  Google Scholar 

  31. Planas, J., Guinea, G.V., and Elices, M., Generalized Size Effect Equation for Quasibrittle Materials, Fatig. Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 671–687.

    Article  Google Scholar 

  32. Dyskin, A.V., Crack Growth Criteria Incorporating Non-Singular Stresses: Size Effect in Apparent Fracture Toughness, Int. J. Fract., 1997, vol. 83, pp. 191–206.

    Article  Google Scholar 

  33. Bazant, Z.P. and Pfeiffer, P.A., Tests on Shear Fracture and Strain-Softening in Concrete, Proc. IISymp. on the Interaction of Non-Nuclear Munitions with Structures, Florida, 1985.

    Google Scholar 

  34. Khan, K. and Al-Shayea, N.A., Effect of Specimen Geometry and Testing Method on Mixed Mode I-II Fracture Toughness of a Limestone Rock from Saudi Arabia, Rock Mech. Rock Eng., 2000, vol. 33, pp. 179–206.

    Article  Google Scholar 

  35. Akbardoost, J., Ayatollahi, M.R., Aliha, M.R.M., Pavier, M.J., and Smith, D.J., Size-Dependent Fracture Behavior of Guiting Limestone under Mixed Mode Loading, Int. J. Rock Mech. Min. Sci., 2014, vol. 71, pp. 369–380.

    Google Scholar 

  36. Aliha, M.R.M., Ayatollahi, M.R., Smith, D.J., and Pavier, M.J., Geometry and Size Effects on Fracture Trajectory in a Limestone Rock under Mixed Mode Loading, Eng. Fract. Mech., 2010, vol. 77, pp. 2200–2212.

    Article  Google Scholar 

  37. Ayatollahi, M.R. and Akbardoost, J., Size Effects on Fracture Toughness of Quasi-Brittle Materials—A New Approach, Eng. Fract. Mech., 2012, vol. 92, pp. 89–100.

    Article  Google Scholar 

  38. Akbardoost, J. and Ayatollahi, M.R., Size Effects on Fracture Behavior of Rock Materials under Combined Tension-Shear Loading, Iran. J. Min. Eng., 2013, vol. 18, pp. 67–79.

    Google Scholar 

  39. Bazant, Z.P. and Pfeiffer, P.A., Shear Fracture Tests of Concrete, Mat. Struct., 1986, vol. 19, pp. 111–121.

    Article  Google Scholar 

  40. Carpinteri, A., Decrease of Apparent Tensile and Bending Strength with Specimen Size: Two Different Explanations Based on Fracture Mechanics, Int. J. Solids Struct., 1989, vol. 25, pp. 407–429.

    Article  Google Scholar 

  41. Hillerborg, A., Modeer, M., and Petersson, P.E., Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement Concrete Res., 1976, vol. 6, pp. 773–781.

    Article  Google Scholar 

  42. Wittmann, F.H., Mihashi, H., and Nomura, N., Size Effect on Fracture Energy of Concrete, Eng. Fract. Mech., 1990, vol. 35, pp. 107–115.

    Article  Google Scholar 

  43. Williams, M.L., On the Stress Distribution at the Base of a Stationary Crack, J. Appl. Mech., 1957, vol. 27, pp. 109–114.

    MathSciNet  MATH  Google Scholar 

  44. Akbardoost, J., Size and Crack Length Effects on Fracture Toughness of Polycrystalline Graphite, Eng. Solid Mech., 2014, vol. 2, pp. 183–192.

    Article  Google Scholar 

  45. Chao, Y.J., Liu, S., and Broviak, B.J., Brittle Fracture: Variation of Fracture Toughness with Constraint and Crack Curving under Mode I Conditions, Exp. Mech., 2001, vol. 41, pp. 232–241.

    Article  Google Scholar 

  46. Smith, D.J., Ayatollahi, M.R., and Pavier, M.J., The Role of T-Stress in Brittle Fracture for Linear Elastic Materials under Mixed-Mode Loading, Fatig. Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 137–150.

    Article  Google Scholar 

  47. Ayatollahi, M.R. and Sistaninia, M., Mode II Fracture Study of Rocks Using Brazilian Disk Specimens, Int. J. Rock Mech. Min. Sci., 2011, vol. 48, pp. 819–826.

    Article  Google Scholar 

  48. Aliha, M.R.M. and Ayatollahi, M.R., Geometry Effects on Fracture Behaviour of Polymethyl Methacrylate, Mater. Sci. Eng. A, 2010, vol. 527, pp. 526–530.

    Article  Google Scholar 

  49. Aliha, M.R.M., Ashtari, R., and Ayatollahi, M.R., Mode I and Mode II Fracture Toughness Testing for a Coarse Grain Marble, Appl. Mech. Mater., 2006, vol. 5-6, pp. 181–188.

    Article  ADS  Google Scholar 

  50. Aliha, M.R.M. and Ayatollahi, M.R., Brittle Fracture Evaluation of a Fine Grain Cement Mortar in Combined Tensile-Shear Deformation, Fatig. Fract. Eng. Mater. Struct., 2009, vol. 32, pp. 987–994.

    Article  Google Scholar 

  51. Akbardoost, J. and Ayatollahi, M.R., Experimental Analysis of Mixed Mode Crack Propagation in Brittle Rocks: the Effect of Non-Singular Terms, Eng. Fract. Mech., 2014, vol. 129, pp. 77–89.

    Article  Google Scholar 

  52. Ayatollahi, M.R. and Aliha, M.R.M., On the Use of Brazilian Disc Specimen for Calculating Mixed Mode I-II Fracture Toughness of Rock Materials, Eng. Fract. Mech., 2008, vol. 75, pp. 4631–4641.

    Article  Google Scholar 

  53. Ayatollahi, M.R., Aliha, M.R.M., and Saghafi, H., An Improved Semi-Circular Bend Specimen for Investigating Mixed Mode Brittle Fracture, Eng. Fract. Mech., 2011, vol. 78, pp. 110–123.

    Article  Google Scholar 

  54. Schmidt, R.A., A Microcrack Model and Its Significance to Hydraulic Fracturing and Fracture Toughness Testing, Proc. 21st US Symp. on Rock Mech., 1980, pp. 581–590.

    Google Scholar 

  55. Aliha, M.R.M., Ashtari, R., and Ayatollahi, M.R., Mode I and Mode II Fracture Toughness Testing for Marble, J. Appl. Mech. Mater., 2006, vol. 5-6, pp. 181–188.

    Article  ADS  Google Scholar 

  56. Bazant, Z.P., Gettu, R., and Kazemi, M.T., Identification of Nonlinear Fracture Properties from Size Effect Tests and Structural Analysis Based on Geometry-Dependent R-Curves, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1991, vol. 28, pp. 43–51.

    Article  Google Scholar 

  57. Karihaloo, B.L., Tension Softening Diagrams and Longitudinally Reinforced Beams, Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics, Karihaloo, G.Ba.B.L., Ed., 1995, pp. 35–50.

    Google Scholar 

  58. Ayatollahi, M.R. and Akbardoost, J., Size Effects in Mode II Brittle Fracture of Rocks, Eng. Fract. Mech., 2013, vol. 112–113, pp. 165–180.

    Article  Google Scholar 

  59. Aliha, M.R.M., Sistaninia, M., Smith, D.J., Pavier, M.J., and Ayatollahi, M.R., Geometry Effects and Statistical Analysis of Mode I Fracture in Guiting Limestone, Int. J. Rock Mech. Min. Sci., 2012, vol. 51, pp. 128–135.

    Article  Google Scholar 

  60. Ayatollahi, M.R. and Nejati, M., An Over-Deterministic Method for Calculation of Coefficients of Crack Tip Asymptotic Field from Finite Element Analysis, Fatig. Fract. Eng. Mater. Struct., 2011, vol. 34, pp. 159–176.

    Article  Google Scholar 

  61. Akbardoost, J. and Rastin, A., Comprehensive Data for Calculating the Higher Order Terms of Crack Tip Stress Field in Disk-Type Specimens under Mixed Mode Loading, Theor. Appl. Fract. Mech., 2015, vol. 76, pp. 75–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Akbardoost.

Additional information

Original Text © J. Akbardoost, A. Rastin, 2016, published in Fizicheskaya Mezomekhanika, 2016, Vol. 19, No. 4, pp. 82-91.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbardoost, J., Rastin, A. Scaling effect on the mixed-mode fracture path of rock materials. Phys Mesomech 19, 441–451 (2016). https://doi.org/10.1134/S102995991604010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995991604010X

Keywords

Navigation