Skip to main content
Log in

Coefficient of friction between a rigid conical indenter and a model elastomer: Influence of local frictional heating

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

We investigate the coefficient of friction between a rigid cone and an elastomer with account of local heating due to frictional dissipation. The elastomer is modeled as a simple Kelvin body and an exponential dependency of viscosity on temperature is assumed. We show that the coefficient of friction is a function of only two dimensionless variables depending on the normal force, sliding velocity, the parameter characterizing the temperature dependence as well as shear modulus, viscosity at the ambient temperature and the indenter slope. One of the mentioned dimensionless variables does not depend on velocity and determines uniquely the form of the dependence of the coefficient of friction on velocity. Depending on the value of this controlling variable, the cases of weak and strong influence of temperature effects can be distinguished. In the case of strong dependence, a generalization of the classical “master curve” procedure introduced by Grosch is suggested by using both horizontal and vertical shift factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popov, V.L., Contact Mechanics and Friction, Berlin: Springer, 2010.

    Book  MATH  Google Scholar 

  2. Greenwood, J.A. and Tabor, D., The Friction of Hard Sliders on Lubricated Rubber—The Importance of Deformation Losses, Proc. Roy. Soc. London, 1958, vol. 71, no. 6, pp. 989–1001.

    Article  Google Scholar 

  3. Grosch, K.A., Relation Between Friction and Viscoelastic Properties of Rubber, Proc. Roy. Soc. London A, 1963, vol. 274, no. 1356, pp. 21–39.

    Article  ADS  Google Scholar 

  4. Barquins, M. and Courtel, R., Rubber Friction and Rheology of Viscoelastic Contact, Wear, 1975, vol. 32, no. 2, pp. 133–150.

    Article  Google Scholar 

  5. Klüppel, M. and Heinrich, G., Rubber Friction on Self-Affine Road Tracks, Rubber Chem. Technol, 2000, vol. 73, no. 4, pp. 578–606.

    Article  Google Scholar 

  6. Persson, B.N.J., Theory of Rubber Friction and Contact Mechanics, J. Chem. Phys., 2001, vol. 115, no. 8, pp. 3840–3861.

    Article  ADS  Google Scholar 

  7. Amontons, G., De la Resistance Cause’e Dans les Machines, Tant par let Frottements des Parties Qui les Component, Que Par la Roideur des Cordes Qu’on y Employe, et la Maniere de Calculer L’un et L’autre, Mem. l’ Academie R, 1699.

  8. Lorenz, B., Persson, B.N.J., Fortunato, G., Giustiniano, M., and Baldoni, F., Rubber Friction for Tire Tread Compound on Road Surfaces, J. Phys. Condens. Matter, 2013, vol. 25, no. 9, p. 095007.

    Article  ADS  Google Scholar 

  9. Popov, V.L. and Dimaki, A.V., Using Hierarchical Memory to Calculate Friction Force between Fractal Rough Solid Surface and Elastomer with Arbitrary Linear Rheological Properties, Tech. Phys. Lett., 2011, vol. 37, no. 1, pp. 18–25.

    ADS  Google Scholar 

  10. Schallamach, A., The Load Dependence of Rubber Friction, Proc. Roy. Soc. London B, 1952, vol. 65, no. 657, pp. 657–661.

    Article  Google Scholar 

  11. Rhee, S.K., Friction Properties of a Phenolic Resin Filled with Iron and Graphite—Sensitivity to Load, Speed and Temperature, Wear, vol. 28, no. 2, pp. 277–281.

  12. Li, Q., Popov, M., Dimaki, A., Filippov, A.E., Kürschner, S., and Popov, V.L., Friction Between a Viscoelastic Body and a Rigid Surface with Random Self-Affine Roughness, Phys. Rev. Lett., 2013, vol. 111, p. 034301.

    Article  ADS  Google Scholar 

  13. Popov, V.L., Voll, L., Li, Q., Chai, Y.S., and Popov, M., Generalized Law of Friction Between Elastomers and Differently Shaped Rough Bodies, Sci. Rep., 2014, vol. 4, p. 3750.

    ADS  Google Scholar 

  14. Li, Q., Dimaki, A., Popov, M., Psakhie, S.G., and Popov, V.L., Kinetics of the Coefficient of Friction of Elastomers, Sci. Rep., 2014, vol. 4, p. 5795.

    ADS  Google Scholar 

  15. Persson, B.N.J., Rubber Friction: Role of the Flash Temperature, J. Phys. Condens. Matter, 2006, vol. 18, no. 32, pp. 7789–7823.

    Article  ADS  Google Scholar 

  16. Putignano, C., Le Rouzic, J., Reddyhoff, T., Carbone, G., and Dini, D., A Theoretical and Experimental Study of Viscoelastic Rolling Contacts Incorporating Thermal Effects, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribology, 2014, pp. 3506501–14530681.

    Google Scholar 

  17. Heß, M., Über die Abbildung Ausgewählter Dreidimensionaler Kontakte auf Systeme Mit Niedrigerer räumlicher Dimension, Göttingen: Cuvillier-Verlag, 2011.

    Google Scholar 

  18. Popov, V.L. and Hess, M., Method of Dimensionality Reduction in Contact Mechanics and Friction: a Users Handbook. I. Axially-Symmetric Contacts, Facta Universitatis. Ser. Mech. Eng., 2014, vol. 12, no. 1, pp. 1–14.

    Google Scholar 

  19. Pohrt, R., Popov, V.L., and Filippov, A.E., Normal Contact Stiffness of Elastic Solids with Fractal Rough Surfaces for One- and Three-Dimensional Systems, Phys. Rev. E, 2012, vol. 86, p. 026710.

    Article  ADS  Google Scholar 

  20. Kürschner, S. and Popov, V.L., Penetration of Self-Affine Fractal Rough Rigid Bodies into a Model Elastomer Having a Linear Viscous Rheology, Phys. Rev. E, 2013, vol. 87, p. 042802.

    Article  ADS  Google Scholar 

  21. Popov, V.L. and Heß, M., Method of Dimensionality Reduction in Contact Mechanics and Friction, Berlin, Springer, 2014.

    Google Scholar 

  22. Popov, V.L., Method of Reduction of Dimensionality in Contact and Friction Mechanics: A Linkage between Micro and Macro Scales, Friction, 2013, vol. 1, no. 1, p. 41–62. doi 10.1007/s40544-013-0005-3

    Article  Google Scholar 

  23. Gal, A.L., Yang, X., and Klüppel, M., Evaluation of Sliding Friction and Contact Mechanics of Elastomers Based on Dynamic-Mechanical Analysis, J. Chem. Phys., 2005, vol. 123, p. 014704.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Popov.

Additional information

Original Text © A.V. Dimaki, V.L. Popov, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 5, pp. 57–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimaki, A.V., Popov, V.L. Coefficient of friction between a rigid conical indenter and a model elastomer: Influence of local frictional heating. Phys Mesomech 18, 75–80 (2015). https://doi.org/10.1134/S1029959915010087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959915010087

Keywords

Navigation