Skip to main content
Log in

Structural fracture scales in shock-loaded epoxy composites

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Shock fracture mechanisms of different scales were investigated on epoxy composite materials reinforced with silicon carbide microparticles of different concentrations. It is shown that the high heterogeneity of the epoxy composites at different structural scales is one of the factors responsible for their physical and mechanical properties. Under dynamic loading, the material reveals a developed structural scale hierarchy which provides self-consistent deformation and fracture of the material bulk with the lead of rotational deformation modes. As a result, microcracks develop due to low shear strain limited in addition by reinforcing particles. At the start of a main crack, microscale mechanisms dominate, whereas the propagation of its front is governed by macroscale fracture mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stukhlyak, P.D., Epoxy Compozites for Protective Coatings, Ternopil: Zbruch, 1994.

    Google Scholar 

  2. Lyukshin, B.A., Panin, S.V., Bochkareva, S.A., Lyukshin, P.A., Matolygina, N.Yu., and Osipov, Yu.V., Computer-Aided Modeling of Reinforced Polymer Compositions, Tomsk: Izd-vo TUSUR, 2007.

    Google Scholar 

  3. Buketov, A.V., Stukhlyak, P.D., Dobrotvor, I.H., Mytnyk, M.M., and Dolgov, N.A., Effect of the Nature of Fillers and Ultraviolet Irradiation on the Mechanical Properties of Epoxy Composite Coating, Strength Mater., 2009, vol. 41, no. 4, pp. 431–435.

    Article  Google Scholar 

  4. Dobrotvor, I.H., Stukhlyak, P.D., and Buketov, A.V., Investigation of the Formation of External Surface Layers in Epoxy Composites, Mater. Sci., 2009, vol. 45, no. 4, pp. 582–588.

    Article  Google Scholar 

  5. Shenogin, S.V., Hohne G.W., Salamatina, O.B., Rudnev, S.N., and Oleynik, E.F., Deformation of Vitreous Polymers: Energy Cumulation at Early Loading Stages, High-Molecular Compounds. A, 2004, vol. 46, no. 1, pp. 30–42.

    Google Scholar 

  6. Pegoretti, A., Guardini, A., Migliaressi, C., and Ricco, T., Recovery of Post-Yielding Deformations in Semicrystalline Poly (Ethylene-Terephthalate), Polymer, 2000, vol. 41, no. 5, pp. 1857–1864.

    Article  Google Scholar 

  7. Volynskii, A.L., Lebedeva, O.V., Bazhenov, S.L., and Bakeev, N.F., Features of Structure Formation in “Polymer-Rigid Coating” System in Liquid Media under Deformation, High-Molecular Compounds. A, 2002, vol. 42, no. 4, pp. 658–664.

    Google Scholar 

  8. Stukhlyak, P.D., Buketov, A.V., and Dobrotvor, I.G., Epoxy-Polymer Composite Materials Modified by Energy Fields, Ternopil: Zbruch, 2008.

    Google Scholar 

  9. Structural Levels of Plastic Deformation and Fracture, Panin, V.E., Ed., Novosibirsk: Nauka, 1990.

    MATH  Google Scholar 

  10. Klyushnichenko, A.B., Panin S.V., and Startsev, O.V., Study of Deformation and Fracture at Meso- and Macroscale Levels of Reinforced Plastics under Static and Cyclic Tension, Phys. Mesomech., 2002, vol. 5, no. 3–4, p. 81–94.

    Google Scholar 

  11. Irzhak, V.I., Rozenberg, A.B., and Enikolopyan, N.S., Cross-Linked Polymers, Moscow: Nauka, 1979.

    Google Scholar 

  12. Anikhina N.Yu., Bochkaryeva, S.A., Lyukshin, B.A., Lyukshin, P.A., and Panin, S.V., Estimation of Adhesion Interaction of Composite Phases Using Stress-Strain Curves, Mekh. Kompoz. Mater. Konstr., 2010, vol. 16, no. 1, pp. 97–105.

    Google Scholar 

  13. Parton, V.Z. and Boriskovskii, V.G., Dynamics of Brittle Fracture, Moscow: Mashinostroenie, 1988.

    Google Scholar 

  14. Makarov, P.V., Romanova, V.A., and Balokhonov, R.R., Numerical Modeling of Heterogeneous Plastic Deformation with Consideration for Generation of Localized Plastic Shears at Interfaces and Free Surfaces, Phys. Mesomech., 2001, vol. 4, no. 5, p. 29–38.

    Google Scholar 

  15. Vildeman, V.E., Sokolkin, Yu.V., and Tashkinov, A.A., Mechanics of Inelastic Deformation and Fracture of Composite Materials, Sokolkin, Yu.V., Ed., Moscow: Nauka, 1997.

  16. Yasniy, P.V., Maruschak, P.O., Panin, S.V., Bischak, R.T., Vuherer, T., Ovechkin, B.B., and Panin, V.E., Temperature Effect on Impact Fracture of 25Cr1Mo1V Ferrite-Pearlite Steel, Phys. Mesomech., 2011, vol. 14, no. 3–4, pp.185–194.

    Article  Google Scholar 

  17. Yasniy, P.V., Maruschak, P.O., Panin, S.V., Sorochak, A.P., and Glikha, V., Synergetic Analysis of Deformation and Fracture Stages of 25Cr1Mn1V Steel under Dynamic Loading, Deform. Razr. Mater., 2012, vol. 15, no. 11, pp. 2–10.

    Google Scholar 

  18. Semenovich, G.N. and Khramova, T.S., IR- and NMR-Spectroscopy of Polymers. Handbook on Physical Chemistry of Polymers, Kiev: Tekhnika, 1985, vol. 3.

    Google Scholar 

  19. Rabek, Ya.R., Experimental Methods in Polymer Chemistry, Moscow: Mir, 1983, Part 1.

    Google Scholar 

  20. Verbitskaya, N.A., Influence of Complex R and V Compounds with Macrocyclic Ligands on Structure Formation of Epoxypolyurethane Binding, Plastic Mass., 2001, no. 7, pp. 10–14.

    Google Scholar 

  21. Yasniy, P.V., Marushchak, P.O., Panin, S.V., Lyubutin, P.S., Pilipenko, A.P., and Bishchak, R.T., Stage Character of Deformation and Fracture Mechanisms of Heat-Resistant 25Cr1Mo1V Steel Damaged by a Thermal Fatigue Crack Network, Fiz. Mezomekh., 2011, vol. 14, no. 6, pp. 99109.

    Google Scholar 

  22. Buketov, A.V., Stukhlyak, P.D., and Kalba, E.M., Physico-chemical Processes of Epoxy-Composite Formation, Ternopil: Zbruch, 2005.

    Google Scholar 

  23. Kalba, E.M., Buketov, A.V., Savchuk, P.P., and Holotenko, S.M., Adhesion Strength of Polymer-Containing Protective Coatings, Mater. Sci., 1999, vol. 35, no. 1, pp. 125128.

    Google Scholar 

  24. Yang, X.-Z. and Sun, J., Coil Extension Stage in the Cold Drawing of Glassy Polymers, J. Polym. Sci. B, 2002, vol. 40, no. 23, pp. 2646–2652.

    Article  Google Scholar 

  25. Volynskii, A.L., Grokhovskaya, T.E., Sembaeva, R.Kh., Bazhenov, S.L., and Bakeev, N.F., Features of Nucleation and Development of Zones of Stability Loss of Solidphase Coatings in Flat-Compression Test of Polymer Substrate, Hight-Molecular Compounds. A, 2001, vol. 43, no. 6, pp. 1008–1016.

    Google Scholar 

  26. Litmanovich, A.D., Plate, N.A., and Kudryavtsev, Y.V., Reactions in Polymer Blends: Interchain Effects and Theoretical Problems, Prog. Polym. Sci., 2002, vol. 27, no. 5, pp. 915–970.

    Article  Google Scholar 

  27. Polymer Composite Materials: Structure, Properties, Technology, Berlin, A.A., Ed., Moscow: Professia, 2008.

    Google Scholar 

  28. Vunderlikh, B. and Baur, G., Thermal Capasity of Linear Polymers, Moscow: Mir, 1972.

    Google Scholar 

  29. Plate, N.A., Macromolecular Reactions, Moscow: Khimia, 1977.

    Google Scholar 

  30. Kramer, E., Green, P., and Palmstrom, C., Interdiffusion and Marker Movements in Concentrated Polymer-Polymer Diffusion Couples, Polymer, 1984, vol. 25, no. 4, pp. 473–480.

    Article  Google Scholar 

  31. Wu, S., Phase Structure and Adhesion in Polymer Blends: a Criterion for Rubber Toughening, Polymer, 1985, vol. 26, no. 12, pp. 1855–1914.

    Article  Google Scholar 

  32. Radon, J.C., Application of Instrumented Impact Test in Polymer Testing, J. Appl. Polymer. Sci., 1978, vol. 22, pp. 1569–1581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Panin.

Additional information

Original Russian Text © P.D. Stukhlyak, A.V. Buketov, S.V. Panin, P.O. Maruschak, K.M. Moroz, M.A. Poltaranin, T. Vukherer, L.A. Kornienko, B.A. Lyukshin, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 2, pp. 65–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stukhlyak, P.D., Buketov, A.V., Panin, S.V. et al. Structural fracture scales in shock-loaded epoxy composites. Phys Mesomech 18, 58–74 (2015). https://doi.org/10.1134/S1029959915010075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959915010075

Keywords

Navigation