Skip to main content
Log in

Material frame representation of equivalent stress tensor for discrete solids

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this paper, we derive expressions for equivalent Cauchy and Piola stress tensors that can be applied to discrete solids and are exact for the case of homogeneous deformation. The main principles used for this derivation are material frame formulation, long wave approximation and decomposition of particle motion into continuum and thermal parts. Equivalent Cauchy and Piola stress tensors for discrete solids are expressed in terms of averaged interparticle distances and forces. No assumptions about interparticle forces are used in the derivation, thereby ensuring our expressions are valid irrespective of the choice of interatomic potential used to model the discrete solid. The derived expressions are used for calculation of the local Cauchy stress in several test problems. The results are compared with prediction of the classical continuum definition (force per unit area) as well as existing discrete formulations (Hardy, Lucy, and Heinz-Paul-Binder stress tensors). It is shown that in the case of homogeneous deformations and finite temperatures the proposed expression leads to the same values of stresses as classical continuum definition. Hardy and Lucy stress tensors give the same result only if the stress is averaged over a sufficiently large volume. Thus, given the lack of sensitivity to averaging volume size, the derived expressions can be used as benchmarks for calculation of stresses in discrete solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mechanics-From Discrete to Continuous, Fomin, V.M., Andreev, A.N., et al., Eds., Novosibirsk: Izd. SO RAN, 2008.

    Google Scholar 

  2. Hoover, W.G., Molecular Dynamics: Lecture Notes in Physics, Berlin: Springer, 1986.

    Google Scholar 

  3. Psakhie, S.G., Korostelev, S.Yu., Smolin, A.Yu., Shilko, E.V., Dmitriev, A.I., Horie, Y., Ostermeyer, G.P., Pegel, M., Blatnik, S., and Zavsek, S., Movable Cellular Automata Method for Simulating Materials with Mesostructure, Theor. Appl. Fract. Mech., 2001, vol. 37, no. 13, pp. 311–334.

    Article  Google Scholar 

  4. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, New York: Dover, 1944.

    MATH  Google Scholar 

  5. Lurie, A.I., Nonlinear Theory of Elasticity, Amsterdam: North-Holland, 1990.

    MATH  Google Scholar 

  6. Goldstein, R.V. and Morozov, N.F., Mechanics of Deformation and Fracture of Nanomaterials and Nanotechnology, Phys. Mesomech., 2007, vol. 10, no. 5–6, pp. 235246.

    Google Scholar 

  7. Panin, V.E. and Egorushkin, V.E., Nanostructural States in Solids, Phys. Met. Metallogr., 2010, vol. 110, no. 5, pp. 464–473.

    Article  ADS  Google Scholar 

  8. Alyokhin, V.V., Annin, B.D., Babichev, A.V., and Korobeynikov, S.N., Free Vibrations and Buckling of Graphene Sheets, Dokl. Phys., 2013, vol. 58, no. 11, pp. 487–490.

    Article  ADS  Google Scholar 

  9. Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L., Electromechanical Resonators from Graphene Sheets, Science, 2007, pp. 315–490.

    Google Scholar 

  10. Liu, W.K., Qian, D., Gonella, S., Li, S., Chen, W., and Chirputkar, S., Multiscale Methods for Mechanical Science of Complex Materials: Bridging from Quantum to Stochastic Multiresolution Continuum, Int. J. Numer. Meth. Engng., 2010, vol. 83, p. 961080.

    Google Scholar 

  11. Clausius, R.J.E., On a Mechanical Theorem Applicable to Heat, Phil. Mag., 1870, vol. 40, pp. 122–127.

    Google Scholar 

  12. Irving, J.H. and Kirkwood, J.G., The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys., 1950, vol. 18, pp. 817829.

    Article  MathSciNet  Google Scholar 

  13. Lutsko, J.F., Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamics Techniques, J. Appl. Phys., 1988, vol. 64, pp. 1152–1154.

    Article  ADS  Google Scholar 

  14. Kunin, I.A., Theory of Elastic Media with Microstructure, Berlin: Springer, 1982.

    Book  Google Scholar 

  15. Admal, N.C. and Tadmor, E.B., A Unified Interpretation of Stress in Molecular Systems, J. Elast., 2011, vol. 100, no. 1–2, pp. 63–143.

    MathSciNet  Google Scholar 

  16. Hardy, R.J., Formulae for Determining Local Properties in Molecular-Dynamics Simulations: Shock Waves, J. Chem. Phys., 1982, vol. 76, pp. 622–628.

    Article  ADS  Google Scholar 

  17. Webb, E.B., Zimmerman, J.A., and Seel, S.C., Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations, J. Math. Mech. Sol., 2008, vol. 13, pp. 221–266.

    Article  MATH  MathSciNet  Google Scholar 

  18. Zimmerman, J.A., Webb, E.B., Hoyt, J.J., Jones, R.E., Klein, P.A., and Bammann, D.J., Calculation of Stress in Atomistic Simulation, Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. S319–S332.

    Article  ADS  Google Scholar 

  19. Zimmerman, J.A., Jones, R.E., and Templeton, J.A., A Material Frame Approach for Evaluating Continuum Variables in Atomistic Simulations, J. Comp. Phys., 2010, vol. 229, pp. 2364–2389.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lucy, L.B., A Numerical Approach to the Testing of the Fission Hypothesis, Astronomical J., 1977, vol. 82, pp. 1013–1024.

    Article  ADS  Google Scholar 

  21. Hoover, W.G. and Hoover, C.G., New Trends in Statistical Physics: Festschrift in Honor of Professor Dr. Leopoldo Garcia-Colin’s 80th Birthday, Macias, A. and Dagdug, L., Eds., Singapore: World Scientific, 2010.

  22. Xiao, S.P. and Belytschko, T., A Bridging Domain Method for Coupling Continua with Molecular Dynamics, Comp. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 1645–1669.

    Article  MATH  MathSciNet  Google Scholar 

  23. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1988.

    MATH  Google Scholar 

  24. Krivtsov, A.M., Influence of Velocities Dispersion on Spall Strength of Material, Z. Angew. Math. Mech., 1999, vol. 79, pp. 511–512.

    Google Scholar 

  25. Krivtsov, A.M., From Nonlinear Oscillations to Equation of State in Simple Discrete Systems, Chaos, Solitons Fractals, 2003, vol. 17, pp. 79–87.

    Article  ADS  MATH  Google Scholar 

  26. Krivtsov, A.M. and Kuzkin, V.A., Microscopic Derivation of the Equation of State for Perfect Crystals, Proc. 6th Int. Conf. on Engineering Computational Technology, Papadrakakis, M. and Topping, B.H.V., Eds., Stirlingshire: Civil-Comp Press, 2008, Paper 145.

    Google Scholar 

  27. Krivtsov, A.M. and Kuzkin, V.A., Derivation of Equations of State for Perfect Crystals with Simple Structure, Mech. Solids, 2011, vol. 46, no. 3, pp. 387–399.

    Article  Google Scholar 

  28. Zhou, M., Thermomechanical Continuum Representation of Atomistic Deformation at Arbitrary Size Scales, Proc. R. Soc. A, 2005, vol. 461, pp. 3447–3472.

    ADS  Google Scholar 

  29. Ulz, M.H., Mandadapu, K.K., and Papadopoulos, P., On the Estimation of Spatial Averaging Volume for Determining Stress Using Atomistic Methods, Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 15010–15015.

    Article  ADS  Google Scholar 

  30. Arroyo, M. and Belytschko, T., Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule, Phys. Rev. B, 2004, vol. 69, p. 115415.

    Article  ADS  Google Scholar 

  31. Heinz, H., Paul, W., and Binder, K., Calculation of Local Pressure Tensors in Systems with Many-Body Interactions, Phys. Rev. E, 2005, vol. 72, p. 066704.

    Article  ADS  MathSciNet  Google Scholar 

  32. Podolskaya, E.A., Krivtsov, A.M., Panchenko, A.Yu., and Tkachev, P.V., Stability of Ideal Infinite Two Dimensional Crystal Lattice, Dokl. Phys., 2012, vol. 57, no. 2, pp. 92–95.

    Article  ADS  Google Scholar 

  33. Le-Zakharov, A.A. and Krivtsov, A.M., Molecular Dynamics Investigation of Heat Conduction in Crystals with Defects, Dokl. Phys., 2008, vol. 53, no. 5, pp. 261–264.

    Article  ADS  MATH  Google Scholar 

  34. Kuzkin, V.A., Interatomic Force in Systems with Multi-body Interactions, Phys. Rev. E, 2010, vol. 82, p. 016704.

    Article  ADS  Google Scholar 

  35. Kosevich, A.M., The Crystal Lattice: Phonons, Solitons, Dislocations, Berlin: Wiley, 1999.

    Book  MATH  Google Scholar 

  36. Kaski, K., Kuronen, A., and Robles, M., Computer Simulation Studies, Condensed Matter Physics XIV, Landau, D.P., Levis, S.P., and Schüttler, H.B., Eds., Berlin: Springer, 2001, pp. 12–26.

    Google Scholar 

  37. Eringen, A.C., Edge Dislocation in Nonlocal Elasticity, Int. J. Eng. Sci., 1977, vol. 15, no. 3, pp. 177–183.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuzkin.

Additional information

Original Text © V.A. Kuzkin, A.M. Krivtsov, R.E. Jones, J.A. Zimmerman, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 4, pp. 49–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzkin, V.A., Krivtsov, A.M., Jones, R.E. et al. Material frame representation of equivalent stress tensor for discrete solids. Phys Mesomech 18, 13–23 (2015). https://doi.org/10.1134/S1029959915010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959915010038

Keywords

Navigation