Advertisement

Physical Mesomechanics

, Volume 17, Issue 4, pp 356–364 | Cite as

Bending stiffness of a graphene sheet

  • I. E. BerinskiiEmail author
  • A. M. Krivtsov
  • A. M. Kudarova
Article

Abstract

The paper proposes a discrete mechanical model of monolayer graphene. A relation between parameters of the model and elastic characteristics of its equivalent continuum is derived by comparing the energy of small strains on micro- and macroscales. The relation allows one to determine the microscale interaction parameters from experimental data and, knowing the microscale parameters, to determine the mechanical properties of graphene. The main aim of the work is to estimate the bending stiffness of a graphene sheet. The proposed discrete model provides an analytical dependence of the graphene sheet bending stiffness on the microscale interaction parameters.

Keywords

bending stiffness graphene moment interaction discrete models rod models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lambert, E., Quarz and Silicon Generators: Golledge è Silicon Labs, Components and Technology, 2010, no. 7, pp. 80–82.Google Scholar
  2. 2.
    Geim, A.K. and Novoselov, K.S., The Rise of Graphene, Nature Materials, 2007, no. 6, pp. 183–191.Google Scholar
  3. 3.
    Bunch, S.J., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L., Electromechanical Resonators from Graphene Sheets, Science, 2007, no. 315, pp. 490–493.Google Scholar
  4. 4.
    Chen, C., Rosenblatt, S., Bolotin, K.I., Kalb, W., Kim, P., and Kymisis, I., Performance of Monolayer Graphene, Nature Nanotechnology, 2009, vol. 4, pp. 861–867.ADSCrossRefGoogle Scholar
  5. 5.
    Peierls, R., Remarks on Transition Temperatures, Helv. Phys. Acta., 1934, no. 7, p. 81.Google Scholar
  6. 6.
    Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics: Statistical Physics, V. 5, Oxford: Pergamon Press, 1980.Google Scholar
  7. 7.
    Timoshenko, S.P., Resistance of Materials, vol. 2., Moscow: Nauka, 1965.Google Scholar
  8. 8.
    Blakslee, O.L., Proctor, G.B., Seldin, E.J., Spence, G.B., and Weng, T., Elastic Constants of Compression-Annealed Pyrolitic Graphite, J. Appl. Phys., 1970, no. 41, pp. 3373–3382.Google Scholar
  9. 9.
    Lee, C., Wei, X., Kusar, J.W., and Honel, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, vol. 321, no. 5887, pp. 385–388.ADSCrossRefGoogle Scholar
  10. 10.
    Reddy, C.D., Rajendran, S., and Liew, K.M., Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene, Nanotechnology, 2006, vol. 17, no. 3, pp. 864–870.ADSCrossRefGoogle Scholar
  11. 11.
    Sakhaee-Pour, A., Ahmadian, M.T., and Naghdabadi, R., Vibrational Analysis of Single-Layered Graphene Sheets, Nanotechnology, 2008, vol. 19, p. 085702.ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, D.B., Akatyeva, E., and Dumitrică, T., Bending Ultrathin Graphene at the Margins of Continuum Mechanics, Phys. Rev. Lett., 2011, vol. 106, p. 255503.ADSCrossRefGoogle Scholar
  13. 13.
    Wei, Y., Wang, B., Wu, J., Yang, R., and Dunn, M.L., Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene, Nano Lett., 2013, vol. 13, pp. 26–30.ADSCrossRefGoogle Scholar
  14. 14.
    Arroyo, M. and Belytschko, T., Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule, Phys. Rev. B, 2004, vol. 69, p. 115415.ADSCrossRefGoogle Scholar
  15. 15.
    Kudin, K.N. and Scuseria, G.E., C2F, BN, and C Nanoshell Elasticity from ab Initio Computations, Phys. Rev. B, 2001, vol. 64, no. 23, p. 235406.ADSCrossRefGoogle Scholar
  16. 16.
    Atalaya, J., Isacsson, A., and Kinaret, J.M., Continuum Elastic Modeling of Graphene Resonators, Nano Lett., 2008, vol. 8, no. 12, pp. 4196–4200.ADSCrossRefGoogle Scholar
  17. 17.
    Lu, Q., Arroyo, M., and Huang, R., Elastic Bending Modulus of Monolayer Graphene, J. Phys. D: Appl. Phys., 2009, vol. 42, p. 102002.ADSCrossRefGoogle Scholar
  18. 18.
    Lindahl, N., Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes, Nano Lett., 2012, vol. 12, pp. 3526–3531.ADSCrossRefGoogle Scholar
  19. 19.
    Poot, M. and van der Zant, H.S., Nanomechanical Properties of Few-Layer Graphene Membranes, Appl. Phys. Lett., 2008, vol. 92, p. 063111.ADSCrossRefGoogle Scholar
  20. 20.
    Scharfenberg, S., Probing the Mechanical Properties of Graphene Using a Corrugated Elastic Substrate, Appl. Phys. Lett., 2011, vol. 98, p. 091908.ADSCrossRefGoogle Scholar
  21. 21.
    Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., and Firsova, A.D., Inclusion of the Moment Interaction in the Calculation of the Flexural Rigidity of Nanostructures, Dokl. Phys., 2003, vol. 48, no. 8, pp. 455–458.ADSCrossRefGoogle Scholar
  22. 22.
    Ivanova, E.A., Krivtsov, A.M., and Morozov, N.F., Macroscopic Relations of Elasticity for Complex Crystal Lattices using Moment Interaction at Microscale, Appl. Math. Mech., 2007, vol. 71, no. 4, pp. 543–561.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Born, M. and Kun, H., Dynamic Theory of Crystal Lattices, Oxford: Claredon Press, 1954.Google Scholar
  24. 24.
    Golovnev, I.F., Golovneva, E.I., and Fomin, V.M., Molecular Dynamics Calculation of Thermodynamic Properties of Nanostructures, Phys. Mesomech., 2008, vol. 11, no. 1–2, pp. 19–24.CrossRefGoogle Scholar
  25. 25.
    Alekhin, V.V., Annin B.D., Babichev, A.V., and Korobeinikov, S.N., Natural Vibrations and Buckling of Graphene Sheets, Mech. Sol., 2013, vol. 48, no. 5, pp. 509–513.CrossRefGoogle Scholar
  26. 26.
    Goldstein, R.V. and Chentsov, A.V., Discrete-Continuous Model of the Nanotube, Mech. Sol., 2005, vol. 40, no. 4, pp. 45–59.Google Scholar
  27. 27.
    Krivtsov, A.M., Elastic Properties of Single and Double Atom Crystals, St. Petersburg: Izd-vo SPbSTU, 2009.Google Scholar
  28. 28.
    Zhilin, P.A., Applied Mechanics. The Theory of Thin Elastic Rods, St. Petersburg: Izd-vo SPbSTU, 2007.Google Scholar
  29. 29.
    Zhilin, P.A., Applied Mechanics. The Theory of Shells, St. Petersburg: Izd-vo SPbSTU, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. E. Berinskii
    • 1
    • 2
    Email author
  • A. M. Krivtsov
    • 1
    • 2
  • A. M. Kudarova
    • 3
  1. 1.Institute of Problems of Mechanical EngineeringRASSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Delft University of TechnologyDelftNetherlands

Personalised recommendations