Skip to main content
Log in

Three-dimensional movable cellular automata simulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper considers 3D movable cellular automata (MCA) models of contact interactions involved in nanoindentation, sclerometry, and tribospectroscopy. The system under study is a titanium substrate with a harden coating. The substrate and coating materials are both described in the elastoplastic approximation. It is shown that the MCA method of numerical simulation provides correct description of the contact interaction of elastoplastic materials under different types of loads with explicit account for fracture. The possibility to detect damages in ma surface layers from friction force estimates is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Oxford: Pergamon Press, 1986.

    Google Scholar 

  2. Development of the Theory of Contact Problems in the USSR, Galin, L.A., Ed., Moscow: Nauka, 1976.

    Google Scholar 

  3. Goryacheva, I.G., Mechanics of Friction Interaction, Moscow: Nauka, 2001.

    Google Scholar 

  4. Popov, V.L., Contact Mechanics and Friction. Physical Principles and Applications, Berlin: Springer-Verlag, 2010.

    Book  MATH  Google Scholar 

  5. Shtansky, D.V., Kiryukhantsev-Korneev, Ph.V., Bashkova, I.A., Sheveiko, A.N., and Levashov, E.A., Multicomponent Nanostructured Films for Various Tribological Applications, Int. J. Refract. Met. Hard Mater, 2010, vol. 28, pp. 32–39.

    Article  Google Scholar 

  6. Shtansky, D.V., Gloushankova, N.A., Bashkova, I.A., Petrzhik, M.I., and Sheveiko, A.N., Multifunctional Biocompatible Nanostructured Coatings for Load-Bearing Implants, Surf. Coat. Tech., 2006, vol. 201, pp. 4111–4118.

    Article  Google Scholar 

  7. Shtansky, D.V., Levashov, E.A., Glushankova, N.A., et al., Structure and Properties of CaO- and ZrO2-doped TiCxNy Coatings for Biomedical Applications, Surf. Coat. Tech., 2004, vol. 182, pp. 101–111.

    Article  Google Scholar 

  8. Levashov, E.A., Petrzhik, M.I., Tyurina, M.Ya., Kiryukhantsev-Korneev, F.V., Tsygankov, P.A., and Rogachev, A.S., Multilayer nanostructured heat-generating coatings. Preparation and certification of mechanical and tribological properties, Metallurgist, 2011, vol. 54, no. 9–10, pp. 623–634.

    Article  Google Scholar 

  9. Golovin, I.Yu., Nanoindentation and its Possibilities, Moscow: Mashinostroenie, 2009.

    Google Scholar 

  10. Oliver, W.C. and Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, no. 7, pp. 1564–1583.

    Google Scholar 

  11. Shugurov, A.R., Panin, A.V., and Oskomov, K.V., Specific Features of the Determination of the Mechanical Characteristics of thin Films by the Nanoindentation Technique, Phys. Sol. St., 2008, vol. 50, no. 6, pp. 1050–1055.

    Article  ADS  Google Scholar 

  12. Venkatesh, T.A., van Vliet, K.J., Giannakopoulos, A.E., and Suresh, S., Determination of Elasto-Plastic Properties by Instrumented Sharp Indention: Guidelines for Property Extraction, Scripta Mater, 2000, vol. 42, no. 9, pp. 833–839.

    Article  Google Scholar 

  13. Flores, S.E., Pontin, M.G., and Zok, F.W., Scratching of Elastic/Plastic Materials with Hard Spherical Indenters, J. Appl. Mech., 2008, vol. 75, pp. 061021–1-7, DOI: 10.1115/1.2966268.

    Article  ADS  Google Scholar 

  14. Shugurov, A.R., Panin, A.V., and Shesterikov, E.V., Sclerometric Study of Galvanic AuNi and AuCo Coatings, Tech. Phys. Lett., 2011, vol. 37, no. 3, pp. 223–225.

    Article  ADS  Google Scholar 

  15. Azarenkov, N.A., Litovchenko, S.V., Beresnev, V.M., Chishkala, V.A., Gravnova, L.V., and Ogienko, S.I., Pecu of Fracture of Silicide Coatings at Mechanical Dynamic Loadings, Fiz. Inzhen. Pover., 2012, vol. 10, no. 4, pp. 411–417.

    Google Scholar 

  16. Psakhie, S.G., Popov, V.L., Shilko, E.V., Smolin, A.Yu., and Dmitriev, A.I., Spectral Analysis of the Behavior and Properties of Solid Surface Layers. Nanotribospectroscopy, Phys. Mesomech., 2009, vol. 12, no. 5–6, pp. 221–234.

    Article  Google Scholar 

  17. Dao, M., Chollacoop, N., van Vliet, K.J., Venkatesh, T.A., and Suresh, S., Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Mater., 2001, vol. 49, pp. 3899–3918.

    Article  Google Scholar 

  18. Bucaille, J.L., Stauss, S., Felder, E., and Michler, J., Determination of Plastic Properties of Metals by Instrumented Indentation Using Different Sharp Indenters, Acta Mater., 2003, vol. 51, pp. 1663–1678.

    Article  Google Scholar 

  19. Psakhie, S.G., Shilko, E.V., and Astafurov, S.V., Peculiarities of the Mechanical Response of Heterogeneous Materials with Highly Deformable Interfaces, Tech. Phys. Lett., 2004, vol. 30, no. 3, pp. 237–239.

    Article  ADS  Google Scholar 

  20. Sreeranganathan, A., Gokhale, A., and Tamirisakandala, S., Determination of Local Constitutive Properties of Titanium Alloy Matrix in Boron-Modified Titanium Alloys Using Spherical Indentation, Scripta Mater., 2008, vol. 58, no. 2, pp. 114–117.

    Article  Google Scholar 

  21. Zimmerman, J.A., Kelchner, C.L., Klein, P.A., Hamilton, J.S., and Foiles, S.M., Surface Step Effects on Nanoindentation, Phys. Rev. Lett., 2001, vol. 87, pp. 165507–165511.

    Article  ADS  Google Scholar 

  22. Saraev, D. and Miller, R.E., Atomic-Scale Simulations of Nanoindentation-Induced Plasticity in Copper Crystals with Nanometer-Sized Nickel Coatings, Acta Mater., 2006, vol. 54, pp. 33–45.

    Article  Google Scholar 

  23. Psakhie, S.G., Ruzhich, V.V., Shilko, E.V., Popov, V.L., and Astafurov, S.V., A New Way to Manage Displacements in Zones of Active Faults, Tribol. Int., 2007, vol. 40, no. 6, pp. 995–1003.

    Article  Google Scholar 

  24. Solar, M., Meyer, H., and Gauthier, C., Analysis of Local Properties during a Scratch Test on a Polymeric Surface Using Molecular Dynamics Simulations, Europ. Phys. J. E, 2013, vol. 36, no. 29, pp. 1–18.

    Google Scholar 

  25. Psakhie, S.G., Horie, Y., Shilko, E.V., Smolin, A.Yu., Dmitriev, A.I., and Astafurov, S.V., Development of Discrete Element Approach to Modeling Heterogeneous Elasticplastic Materials and Media, Int. J. Terraspace Sci. Eng., 2011, vol. 3, no. 1, pp. 93–125.

    Google Scholar 

  26. Psakhie, S.G., Ostermeyer, G.P., Dmitriev, A.I., Shilko, E.V., Smolin, A.Yu., and Korostelev, S.Yu., Method of Movable Cellular Automata as a New Trend of Discrete Computational Mechanics. I. Theoretical Description, Phys. Mesomech., 2000, vol. 3, no. 2, pp. 5–12.

    Google Scholar 

  27. Popov, V.L. and Psakhie, S.G., Theoretical Principles of Modeling Elastoplastic Media by Movable Cellular Automata Method. I. Homogeneous Media, Phys. Mesomech., 2001, vol. 4, no. 1, pp. 15–25.

    Google Scholar 

  28. Psakhie, S.G., Moiseenko, D.D., Dmitriev, A.I., Shilko, E.V., Korostelev, S.Yu., Smolin, A.Yu., Deryugin, E.E., and Kulkov, S.N., A Possible Method of Computer-Aided Design of Materials with a Highly Porous Matrix Structure Based on the Method of Moving Cellular Automata, Tech. Phys. Lett., 1998, vol. 24, no. 2, pp. 154–156.

    Article  ADS  Google Scholar 

  29. Smolin, A.Yu., Roman, N.V., Dobrynin, S.A., and Psakhie, S.G., On Rotation in the Movable Cellular Automaton Method, Phys. Mesomech., 2009, vol. 12, no. 3–4, pp. 124–129.

    Article  Google Scholar 

  30. Cundall, P.A. and Strack, O.D.L., A Discrete Numerical Model for Granular Assemblies, Geotechnique, 1979, vol. 29, no. 1, pp. 47–65.

    Article  Google Scholar 

  31. Oesterle, W., Prietzel, C., and Dmitriev, A.I., Investigation of Surface Film Nanostructure and Assessment of its Impact on Friction Force Stabilization during Automotive Braking, Int. J. Mater. Res., 2010, vol. 101, no. 5, pp. 669–675.

    Article  Google Scholar 

  32. Dmitriev, A.I. and Oesterle, W., Modeling of Brake Pad-Disc Interface with Emphasis to Dynamics and Deformation of Structures, Tribol. Int., 2010, vol. 43, no. 4, pp. 719–727.

    Article  Google Scholar 

  33. Martin, C.L. and Bouvard, D., Study of the Cold Compaction of Composite Powders by the Discrete Element Method, Acta Mater., 2003, vol. 51, no. 2, pp. 373–386.

    Article  Google Scholar 

  34. Potyondy, D.O. and Cundall, P.A., A Bonded-Particle Model for Rock, Int. J. Rock Mech. Mining Sci., 2004, vol. 41, no. 8, pp. 1329–1364.

    Article  Google Scholar 

  35. Psakhie, S.G., Smolin, A.Yu., Stefanov, Yu.P., Makarov, P.V., Shilko, E.V., Chertov, M.A., and Evtushenko, E.P., Simulation of Behavior of Complex Media on the Basis of a Discrete-Continuous Approach, Phys. Mesomech., 2003, vol. 6, no. 5–6, pp. 47–56.

    Google Scholar 

  36. Wilkins, M.L., Computer Simulation of Dynamic Phenomena, Berlin: Springer-Verlag, 1999.

    Book  MATH  Google Scholar 

  37. Wilkins, M.L., Calculation of Elastic-Plastic Flow, Methods in Computational Physics, Vol. 3, Alder, B., Fernbach, S., Rotenberg, M., Eds., New York: Academic Press, 1964, pp. 211–263.

    Google Scholar 

  38. Levashov, E.A., Shtanskii, D.V., Kiryukhantsev-Korneev, F.V., Petrzhik, M.I., Tyurina, M.Ya., and Sheveiko, A.N., Multifunctional Nanostructured Coatings: Formation, Structure, and the Uniformity of Measuring their Mechanical and Tribological Properties, Russ. Metall., 2010, no. 10, pp. 917–935.

    Google Scholar 

  39. Levashov, E.A., Petrzhik, M.I., Kiryukhantsev-Korneev, F.V., Shtanskii, D.V., Prokoshkin, S.D., Gunderov, D.V., Sheveiko, A.N., Korotitskii, A.V., and Valiev, R.Z., Structure and Mechanical Behavior during Indentation of Biocompatible Nanostructured Titanium Alloys and Coatings, Metallurgist, 2012, vol. 56, no. 5, pp. 395–407.

    Article  Google Scholar 

  40. Levashov, E.A., Petrzhik, M.I., Shtansky, D.V., Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Gunderov, D.V., Prokoshkin, S.D., Korotitskiy, A.V., and Smolin, A.Yu., Nanostructured Titanium Alloys and Multicomponent Bioactive Films: Mechanical Behavior at Indentation, Mater. Sci. Eng. A, 2013, vol. 570, pp. 51–62.

    Article  Google Scholar 

  41. Smolin, A.Yu., Anikeeva, G.M., Shilko, E.V., and Psakhie, S.G., Simulation of Deformation of Nanostructural Coatings on the Titanium Substrate at Nanoindentation, Vest. TGU. Mat. Mekh., 2013, vol. 24, no. 4, pp. 111–125.

    Google Scholar 

  42. Psakhie, S.G., Smolin, A.Yu., Shilko, E.V., Anikeeva, G.M., Pogozhev, Yu.S., Petrzhik, M.I., and Levashov, E.A., Modeling Nanoindentation of TiCCaPON Coating on Ti Substrate Using Movable Cellular Automaton Method, Comput. Mater. Sci., 2013, vol. 76, pp. 89–98.

    Article  Google Scholar 

  43. Muliana, A., Steward, R., Hajali, R.M., and Saxena, A., Artificial Neural Network and Finite Element Modeling of Nanoindentation Tests, Metall. Mater. Transact. A, 2002, vol. 33, pp. 1939–1948.

    Article  ADS  Google Scholar 

  44. Feng, Z.-Q., Zei, M., and Joli, P., An Elasto-Plastic Contact Model Applied to Nanoindentation, Comput. Mater. Sci., 2007, vol. 38, pp. 807–813.

    Article  Google Scholar 

  45. Dobrynin, S.A., Kolubaev, E.A., Smolin, A.Yu., Dmitriev, A.I., and Psakhie, S.G., Time-Frequency Analysis of Acoustic Signals in the Audio-Frequency Range Generated During Hadfield’s Steel Friction, Tech. Phys. Lett., 2010, vol. 36, no. 7, pp. 606–609.

    Article  ADS  Google Scholar 

  46. Sergeev, V.V., Smolin, A.Yu., Dobrynin, S.A., Korostelev, S.Yu., and Psakhie, S.G., Possibilities of Detection of Nanoscopic Pores Using the Analysis of Friction Forces, Vest. TGU. Mat. Mekh., 2010, vol. 12, no. 4, pp. 116–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Smolin.

Additional information

Original Russian Text © A.Yu. Smolin, G.M. Eremina, V.V. Sergeev, E.V. Shilko, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 3, pp. 64–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolin, A.Y., Eremina, G.M., Sergeev, V.V. et al. Three-dimensional movable cellular automata simulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter. Phys Mesomech 17, 292–303 (2014). https://doi.org/10.1134/S1029959914040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959914040067

Keywords

Navigation