Physical Mesomechanics

, Volume 17, Issue 1, pp 23–29 | Cite as

Some problems of nanomechanics

Article

Abstract

The paper presents a selection of simulation results obtained for nanosized objects in continuum and structural mechanics. Eigenfrequency measurements as a tool to study nanostructures composed of a multitude of like nanoelements are discussed. The structures under consideration are ordered arrays of nanoobjects (nanocrystals, nanoshells) fixed on an elastic substrate. It is shown that from the eigenfrequency spectrum of this type of mechanical systems one can determine several eigenfrequencies of a single nanoobject. Also considered in the paper is accounting for surface stress and associated modification of effective properties of nanomaterials.

Keywords

nanoobjects nanostructures vibrations surface stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Likhachev, V.A., Panin, V.E., Zasimchuk, E.E., et al., Cooperative Deformation Processes and Localization of Deformation, Kiev: Naukova Dumka, 1989.Google Scholar
  2. 2.
    Panin, V.E., Grinyaev, Yu.V., and Danilov, V.I., Structural Levels of Plastic Deformation and Failure, Panin, V.E., Ed., Novosibirsk: Nauka, 1990.Google Scholar
  3. 3.
    Gutkin, M.Yu. and Ovidko, I.A., Physical Mechanics of Deformed Nanostructures, in 2 vol., SPb.: Yanus, 2003, vol. 1; SPb.: Yanus, 2005, vol. 2.Google Scholar
  4. 4.
    Nanotribology and Nanomechanics. An Introduction, Bhushan, B., Ed., Berlin: Springer-Verlag, 2005.Google Scholar
  5. 5.
    Springer Handbook of Nanotechnology, Bhushan, B., Ed., Berlin: Springer-Verlag, 2007.Google Scholar
  6. 6.
    Marshall, R.H., Sokolov, LA., Ning, Y.N., Palmer, A.W., and Grattan, K.T.V., Photoelectromotive Force Crystals for Interferometric Measurement of Vibrational Response, Meas. Sci. Technol., 1996, vol. 7, pp. 1683–1686.ADSCrossRefGoogle Scholar
  7. 7.
    Gould, S.H., Variational Methods for Eigenvalue Problems: an Introduction to the Weinstein Method of Intermediate Problems, London: Oxford University Press, 1966.MATHGoogle Scholar
  8. 8.
    Eremeyev, V.A., Ivanova, E. A., Morozov, N.F, and Soloviev, A.N., On the Determination of Eigenfrequencies for Nanometer-Size Objects, Dokl. Phys., 2006, vol. 51, no. 2, pp. 93–97.ADSCrossRefGoogle Scholar
  9. 9.
    Eremeyev, V.A., Ivanova, E. A., Morozov, N.F., and Soloviev, A.N., Method of Determining the Eigenfrequencies of an Ordered System of Nanoobjects, Tech. Phys., 2007, vol. 52, no. 1, pp. 1–6.CrossRefGoogle Scholar
  10. 10.
    Lorenz, M., Lenzner, J., Kaidashev, E.M., Hochmuth, H., and Grundmann, M., Cathodoluminescence of Selected Single ZnO Nanowires on Sapphire, Annalen der Physik., 2004, vol. 2, no. 1, pp. 39–42.ADSCrossRefGoogle Scholar
  11. 11.
    Kaidashev, E.M., Lorenz, M., Wenckstern, H., Rahm, A., Semmelback, C, Ran, K.-H., Benndorf, G., Bundesmann, C., Hochmuth, H., and Grudmann, M., High Electron Mobility of Epitaxial ZnO Thin Films on c-plane Sapphire Grown by Multi-Step Pulsed Laser Deposition, Appl. Phys. Lett., 2003, vol. 82, pp. 3901–3903.ADSCrossRefGoogle Scholar
  12. 12.
    Lorenz, M., Hochmuth, H., Schmidt-Grund, R., Kaidashev, E.M., and Grundmann, M., Advances of Pulsed Laser Deposition of ZnO Thin Films, Annalen der Physik., 2004, vol. 13, no. 1, pp. 59–61.ADSCrossRefGoogle Scholar
  13. 13.
    Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., and Strochkov, S.E., Natural Vibrations of Nanotubes, Dokl. Phys., 2007, vol. 52, no. 8, pp. 431–435.ADSCrossRefMATHGoogle Scholar
  14. 14.
    Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., and Strochkov, S.E., The Spectrum of Natural Oscillations of an Array of Micro-or Nanospheres on an Elastic Substrate, Dokl. Phys., 2007, vol. 52, no. 12, pp. 699–702.ADSCrossRefMATHGoogle Scholar
  15. 15.
    Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., and Strochkov, S.E., Natural Vibrations in a System of Nanotubes, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 2, pp. 291–300.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Boutin, C. and Roussillon, P., Assessment of the Urbanization Effect on Seismic Response, Bull. Seismol. Soc. Amer., 2004, vol. 94, no 1, pp. 251–268.CrossRefGoogle Scholar
  17. 17.
    Boutin, C. and Roussillon, P., Wave Propagation in Presence of Oscillators on the Free Surface, Int. J. Eng. Sci., 2006, vol. 44, no. 3–4, pp. 180–204.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Duan, H.L., Wang, J., and Karihaloo, B.L., Theory of Elasticity at the Nanoscale, Adv. Appl. Mech., 2008, vol. 42, pp. 1–68.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., and Wang, T., Surface Stress Effect in Mechanics of Nanostructured Materials, Acta Mech. Solida Sinica, 2011, vol. 24, pp. 52–82.CrossRefGoogle Scholar
  20. 20.
    Javili, A.A., Mc Bride, A.A., and Steinmann, P., Thermomechanics of Solids with Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review, Appl. Mech. Rev., 2013, vol. 65, no. 1, pp. 010802–010802-31.ADSCrossRefGoogle Scholar
  21. 21.
    Goldstein, R.V., Gorodtsov, V.A., and Ustinov, K.B., Effect of Residual Surface Stress and Surface Elasticity on Deformation of Nanometer Spherical Inclusions in an Elastic Matrix, Phys. Mesomech., 2010, vol. 13, no. 5–6, pp. 318–328.CrossRefGoogle Scholar
  22. 22.
    Gurtin, M.E. and Murdoch, A.I., A Continuum Theory of Elastic Material Surfaces, Arch. Rat. Mech. Analysis, 1975, vol. 57, no. 4, pp. 291–323.ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Murdoch, A.I., A Thermodynamical Theory of Elastic Material Interfaces, Q. J. Mech. Appl. Math., 1976, vol. 29, no. 3, pp. 245–274.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Podstrigach, Ya.S. and Povstenko, Yu.Z., Introduction in Mechanics Surface Effects in Deformed Solids, Kiev: Naukova Dumka, 1985.MATHGoogle Scholar
  25. 25.
    TUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), Cocks, A. and Wang, J., Eds., Netherlands: Springer, 2013, vol. 31.Google Scholar
  26. 26.
    Surface Effects in Solid Mechanics: Models, Simulations and Applications. Advanced Structured Materials, Altenbach, H. and Morozov, N.F., Eds., Berlin-Heidelberg: Springer, 2013, vol. 30.Google Scholar
  27. 27.
    Ibach, H., The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures, Surf. Sci. Rep., 1997, vol. 29, no. 5–6, pp. 195–263.ADSCrossRefGoogle Scholar
  28. 28.
    Ustinov, K.B., Goldstein, R.V., and Gorodtsov, V.A., On the Modeling of Surface and Interface Elastic Effects in Case of Eigenstrains, Advanced Structured Materials: Surface Effects in Solid Mechanics, Altenbach, H. and Morozov, N.F., Eds., Berlin: Springer, 2013, vol. 30, pp. 167–180.CrossRefGoogle Scholar
  29. 29.
    Shenoy, V.B. and Miller, R.E., Size-Dependent Elastic Properties of Nanosized Structural Elements, Nanotechnology, 2000, vol. 11, no. 3, pp. 139–147.ADSCrossRefGoogle Scholar
  30. 30.
    Shenoy, V.B., Atomistic Calculations of Elastic Properties of Metallic fcc Crystal Surfaces, Phys. Rev. B, 2005, vol. 71, no. 9, pp. 094104–11.ADSCrossRefGoogle Scholar
  31. 31.
    Mindlin, R.D., Second Gradient of Strain and Surface-Tension in Linear Elasticity, Int. J. Solids Struct., 1965, vol. 1, no. 4, pp. 417–438.CrossRefGoogle Scholar
  32. 32.
    dell’Isola, F. and Seppecher, P., The Relationship between Edge Contact Forces, Double Forces and Interstitial Working Allowed by the Principle of Virtual Power, C. R. Acad. Sci. II, 1995, vol. 321, no. 8, pp. 303–308.MATHGoogle Scholar
  33. 33.
    dell’Isola, F. and Seppecher, P., Edge Contact Forces and Quasi-Balanced Power, Meccanica, 1997, vol. 32, no. 1, pp. 33–52.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Rosi, G., Giorgio, I., and Eremeyev, V.A., Propagation of Linear Compression Waves through Plane Interfacial Layers and Mass Adsorption in Second Gradient Fluids, Z. Angew. Math. Mech., 2013, vol. 93, no. 12, pp. 914–927.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Altenbach, H., Eremeyev, V.A., and Lebedev, L.P., On the Existence of Solution in the Linear Elasticity with Surface Stress, Z. Angew. Math. Mech., 2010, vol. 90, no. 3, pp. 231–240.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Altenbach, H., Eremeyev, V.A., and Lebedev, L.P., On the Spectrum and Stiffness of an Elastic Body with Surface Stresses, Z. Angew. Math. Mech., 2011, vol. 91, no. 9, pp. 699–710.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Eremeyev, V.A. and Lebedev, L.P., Existence of Weak Solutions in Elasticity, Math. Mech. Solids, 2013, vol. 18, no. 2, pp. 204–217.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Javili, A. and Steinmann, P., A Finite Element Framework for Continua with Boundary Energies. Part I: The Two-Dimensional Case, Comput. Methods Appl. Mech. Engng., 2009, vol. 198, pp. 219–2208.CrossRefMATHGoogle Scholar
  39. 39.
    Javili, A. and Steinmann, P., A Finite Element Framework for Continua with Boundary Energies. Part II: The Three-Dimensional Case, Comput. Methods Appl. Mech. Engng., 2010, vol. 199, pp. 755–765.ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Eremeyev, V.A. and Morozov, N.F., On Effective Stiffness of Nanoporous Rod, Dokl. Phys., 2010, vol. 432, no. 4, pp. 473–476.Google Scholar
  41. 41.
    Altenbach, H., Eremeyev, V.A., and Morozov, N.F., Mechanical Properties of Materials Considering Surface Effects, IUTAM Bookseries: V. 31. IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, Cocks, A. and Wang, J., Eds., Netherlands: Springer, 2013, pp. 105–115.CrossRefGoogle Scholar
  42. 42.
    Altenbach, H., Eremeyev, V.A., and Morozov, N.F., On the Influence of Residual Surface Stresses on the Properties of Structures at the Nanoscale, Advanced Structured Materials: V. 30. Surface Effects in Solid Mechanics, Altenbach, H. and Morozov, N.F., Eds., Berlin: Springer, 2013, pp. 21–32.CrossRefGoogle Scholar
  43. 43.
    Wang, J., Duan, H.L., Huang, Z.P., and Karihaloo, B.L., A Scaling Law for Properties of Nano-Structured Materials, Proc. Roy. Soc. London A, 2006, vol. 462, no. 2069, pp. 1355–1363.ADSCrossRefMATHGoogle Scholar
  44. 44.
    Duan, H.L., Wang, J., Karihaloo, B.L., and Huang, Z.P., Nanoporous Materials Can be Made Stiffer than Non-porous Counterparts by Surface Modification, Acta Mater., 2006, vol. 54, pp. 2983–2990.CrossRefGoogle Scholar
  45. 45.
    Altenbach, H., Eremeyev, V.A., and Morozov, N.F., Linear Theory of Shells Taking into Account Surface Stresses, Dokl. Phys., 2009, vol. 54, no. 12, pp. 531–535.ADSCrossRefGoogle Scholar
  46. 46.
    Altenbach, H., Eremeyev, V.A., and Morozov, N.F., On Equations of the Linear Theory of Shells with Surface Stresses Taken into Account, Mech. Solids, 2010, vol. 45, no. 3, pp. 331–342.ADSCrossRefGoogle Scholar
  47. 47.
    Altenbach, H. and Eremeyev, V.A., On the Shell Theory on the Nanoscale with Surface Stresses, Int. J. Eng. Sci., 2011, vol. 49, no. 12, pp. 1294–1301.MathSciNetCrossRefGoogle Scholar
  48. 48.
    Altenbach, H., Eremeyev, V.A., and Morozov, N.F., Surface Viscoelasticity and Effective Properties of Thin-Walled Structures at the Nanoscale, Int. J. Eng. Sci., 2012, vol. 59, pp. 83–89.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Eremeyev, V.A., Altenbach, H., and Morozov, N.F., The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates, Dokl. Phys., 2009, vol. 54, no. 2, pp. 98–100.ADSCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. A. Eremeyev
    • 1
    • 2
  • E. A. Ivanova
    • 3
    • 4
  • N. F. Morozov
    • 4
    • 5
  1. 1.Otto-von-Guericke Universität MagdeburgMagdeburgGermany
  2. 2.Southern Scientific Center, Russian Academy of SciencesSouthern Federal UniversityRostov-on-DonRussia
  3. 3.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  4. 4.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  5. 5.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations