Skip to main content
Log in

On the reduction method of dimensionality: The exact mapping of axisymmetric contact problems with and without adhesion

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Starting from the classical theory of contact mechanics it is shown that the relationship between load, penetration and contact radius of any axisymmetric contact can be mapped exactly on a one-dimensional system, thus the reduction method of dimensionality is valid for conforming and non-conforming contacts. Furthermore the reduction method has been successfully extended to adhesive contact problems. The mapping of the classical theory of Johnson, Kendall and Roberts derived for spherical contacts as well as its application to axisymmetric contacts of arbitrary shape is possible; all results are reproduced precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, Über die Berührung fester elastischer Körper, J. für die reine und angewandte Mathematik, 92 (1882) 156.

    MATH  Google Scholar 

  2. K.L. Johnson, K. Kendall, and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. Roy. Soc. Lond. A. Mat., 324 (1971) 301.

    Article  ADS  Google Scholar 

  3. J. Boussinesq, Application des Potentiels a L’etude de L’equilibre et du Mouvement des Solides Elastiques, Gauthier-Villars, Paris, 1885.

    MATH  Google Scholar 

  4. I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 3 (1965) 47.

    Article  MathSciNet  MATH  Google Scholar 

  5. W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 19, No. 1 (2004) 3.

    Article  ADS  Google Scholar 

  6. D. Maugis and M. Barquins, Fracture mechanics and the adherence of viscoelastic bodies, J. Phys. D, 11 (1978) 1989.

    Article  ADS  Google Scholar 

  7. M. Barquins and D. Maugis, Adhesive contact of axisymmetric punches on an elastic half-space: The modified Hertz-Huber’s stress tensor for contacting spheres, J. Méc. Théor. Appl., 1 (1982) 331.

    MATH  Google Scholar 

  8. D. Maugis and M. Barquins, Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: Theory and experiment, J. Phys. D, 16 (1983) 1843.

    Article  ADS  Google Scholar 

  9. H. Yao and H. Gao, Optimal shapes for adhesive binding between two elastic bodies, J. Colloid Interf. Sci., 298, No. 2 (2006) 564.

    Article  Google Scholar 

  10. T. Geike and V.L. Popov, Mapping of three-dimenional contact problems into one dimension, Phys. Rev. E, 76, No. 3 (2007) 036710.

    Article  ADS  Google Scholar 

  11. V.L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  12. V.L. Popov and S.G. Psakhie, Numerical simulation methods in tribology, Tribol. Int., 40, No. 6 (2007) 916.

    Article  Google Scholar 

  13. V.L. Popov and A. Dimaki, Using hierarchical memory to calculate friction force between fractal rough solid surface and elastomer with arbitrary linear rheological properties. Tech. Phys. Lett., 37, No. 1 (2011) 8.

    Article  ADS  Google Scholar 

  14. M. Heß, Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension, Cuvillier-Verlag, Berlin, 2011.

    Google Scholar 

  15. E. Steuermann, To Hertz’s theory of local deformations in compressed elastic bodies, Dokl. AS URSS, 25 (1939) 359.

    MATH  Google Scholar 

  16. C.M. Segedin, The relation between load and penetration for a spherical punch, Mathematika, 4 (1957) 156.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, J. Mater. Res., 7, No. 3 (1992) 613.

    Article  ADS  Google Scholar 

  18. R.E. Gibson, Some results concerning displacements and stresses in a non-homogeneous elastic half-space, Geotechnique, 17, No. 1 (1967) 58.

    Article  MathSciNet  Google Scholar 

  19. G.R. Irwin, Fracture, in Handbook of Physics, Springer-Verlag, Berlin, V. 6 (1958) 551.

    Google Scholar 

  20. A.A. Griffith, The phenomena of rapture and flow in solids, Philos. T. Roy. Soc. A, 221 (1921) 163.

    Article  ADS  Google Scholar 

  21. D. Maugis, Contact, Adhesion and Rupture of Elastic Solids, Springer Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Heß.

Additional information

Original Text © M. Heß, 2012, published in Fiz. Mezomekh., 2012, Vol. 15, No. 4, pp. 19–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heß, M. On the reduction method of dimensionality: The exact mapping of axisymmetric contact problems with and without adhesion. Phys Mesomech 15, 264–269 (2012). https://doi.org/10.1134/S1029959912030034

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959912030034

Keywords

Navigation