Skip to main content
Log in

Local structural transformations in the fcc lattice in various contact interaction. Molecular dynamics study

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The work is a molecular dynamics study of the peculiarities of local structural transformations in a copper crystallite at the atomic level in contact interaction of various types: shear loading of perfectly conjugate surfaces, local shear loading and nanoindentation. Interatomic interaction is described in the framework of the embedded atom method. It is shown that initial accommodation of the loaded crystallite proceeds through local structural transformations giving rise to higher-rank defects such as dislocations, stacking faults, interfaces, etc. In further plastic deformation, the structural defects propagate from the contact zone to the crystallite bulk. The egress of structural defects to a free surface causes deformation of the model crystallite. The deformation pattern can evolve, depending on the loading conditions, with a change in crystallographic orientation of the crystallite near the contact zone, generation of misoriented nano-sized regions, and eventually formation of a stable nanostructural state. The obtained results allow conceptually new understanding of the nature of defect generation in a crystalline structure during the nucleation and development of plastic deformation in loaded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.E. Panin, V.A. Likhachev, and Yu.V. Grinyaev, Structural Levels of Deformation in Solids, Nauka, Novosibirsk, 1985 (in Russian).

    Google Scholar 

  2. V.E. Panin and V.E. Egorushkin, Deformable solid as a nonlinear hierarchically organized system, Phys. Mesomech., 14, No. 5–6 (2011) 207.

    Article  Google Scholar 

  3. Yu.V. Grinyaev, S.G. Psakhie, and N.V. Chertova, Phase space of solids under deformation, Phys. Mesomech., 11, No. 5–6 (2008) 228.

    Article  Google Scholar 

  4. S.G. Psakhie, G.P. Ostermeyer, A.I. Dmitriev, E.V. Shilko, A.Yu. Smo-lin, and S.Yu. Korostelev, Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description, Phys. Mesomech., 3, No. 2 (2000) 5.

    Google Scholar 

  5. S.G. Psakhie, Y. Horie, G.-P. Ostermeyer, et al., Movable cellular automata method for simulating materials with mesostructure, Theor. Appl. Fract. Mech., 37, No. 1–3 (2001) 311.

    Article  Google Scholar 

  6. V.L. Popov, S.G. Psakhie, E.V. Shilko, and A.I. Dmitriev, Quasi-fluid nano-layers at the interface between rubbing bodies: Simulation by movable cellular automata, Wear, 254, No. 9 (2003) 901.

    Article  Google Scholar 

  7. A.I. Dmitriev, A.Yu. Smolin, M. Schargott, VL. Popov, and S.G. Psakhie, A multilevel computer simulation of friction and wear by numerical methods of discrete mechanics and aphenomenological theory, Phys. Mesomech., 12, No. 1–2 (2009) 11.

    Article  Google Scholar 

  8. S.G. Psakhie, M.A. Chertov, and E.V. Shilko, Interpretation of the parameters of the method of movable cellular automata on the basis of continuum description, Phys. Mesomech., 3, No. 3 (2000) 89.

    Google Scholar 

  9. M. Rieth, Nano-Engineering in Science and Technology: An Introduction to the World of Nano-Design, World Scientific Pub., London, 2003.

    Book  Google Scholar 

  10. V. E. Rubtsov, S. G. Psakh’e, and A. V. Kolubaev, Study of the formation of contact between rough surfaces based on the particle method, Tech. Phys. Lett, 1998, 24, No. 3, 178.

    Article  ADS  Google Scholar 

  11. I.G. Goraycheva, Mechanics of Frictional Interaction, Nauka, Moscow, 2001 (in Russian).

    Google Scholar 

  12. S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995) 1.

    Article  ADS  MATH  Google Scholar 

  13. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B, 59, No. 5 (1999) 3393.

    Article  ADS  Google Scholar 

  14. H. van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B, 60 (1999) 22.

    Article  ADS  Google Scholar 

  15. S.G. Psakhie, K.P Zolnikov, D.S. Kryzhevich, and A.G. Lipnitskii, On structural defect generation induced by thermal fluctuations in materials with a perfect lattice under dynamic loading, Phys. Lett. A, 349 (2006) 509.

    Article  ADS  Google Scholar 

  16. S.G. Psakhie, K.P. Zolnikov, and D.S. Kryzhevich, Elementary atomistic mechanism of crystal plasticity, Phys. Lett. A, 367 (2007) 250.

    Article  ADS  Google Scholar 

  17. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and YL. Shen, Indentation across size scales and disciplines: Recent developments in experimentation and modeling, Acta Mater., 55 (2007) 4015.

    Article  Google Scholar 

  18. R.E. Miller and D. Rodney, On the nonlocal nature of dislocation nucleation during nanoindentation, J. Mech. Phys. Solids, 56 (2008) 1203.

    Article  MATH  Google Scholar 

  19. T.J. Delph and J.A. Zimmerman, Prediction of instabilities at the atomic scale, Model. Simul. Mater. Sci. Eng., 18 (2010) 045008.

    Article  ADS  Google Scholar 

  20. D. Saraev and R.E. Miller, Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings, Acta Mater., 54, No. 1 (2006) 161.

    Article  Google Scholar 

  21. A.V. Bolesta and V.M. Fomin, Molecular dynamics simulation of sphere indentation in a thin copper film, Phys. Mesomech., 12, No. 3–4 (2009) 117.

    Article  Google Scholar 

  22. P. Berke, E. Tarn, M.-P. Delplancke-Ogletree, and T.J. Massart, Study of the rate-dependent behavior of pure nickel in conical nanoindentation through numerical simulation coupled to experiments, Mech. Mater., 41 (2009) 154.

    Article  Google Scholar 

  23. I. Szlufarska, Atomistic simulations of nanoindentation, Mater. Today, 9 (2006) 42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Psakhie.

Additional information

Original Russian Text © S.G. Psakhie, K.P. Zolnikov, A.I. Dmitriev, D.S. Kryzhevich, A.Yu. Nikonov, 2012, published in Fiz. Mezomekh., 2012, Vol. 15, No. 1, pp. 23–31.

Distributed worldwide by Springer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psakhie, S.G., Zolnikov, K.P., Dmitriev, A.I. et al. Local structural transformations in the fcc lattice in various contact interaction. Molecular dynamics study. Phys Mesomech 15, 147–154 (2012). https://doi.org/10.1134/S1029959912020026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959912020026

Keywords

Navigation