Skip to main content
Log in

The Effect of Accelerated Absorption of Liquid in a Tube during Laser Cavitation on a Laser Heating Element

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The expansion and collapse of a cavitation bubble during laser heating and subcooled boiling of water in the vicinity of the tip of an optical fiber (laser heating element) installed in a water-filled glass tube with two open ends is studied experimentally and numerically. Cavitation, initiated by continuous laser radiation, is accompanied by the pushing and pulling movement of the heated liquid in the tube and outside it. For the first time, it has been shown that in a tube with an installed laser heating element in a liquid flow moving behind the walls of the bubble, when it collapses at the pole of the bubble surface remote from the end, a liquid jet appears, directed through the bubble to the end of the optical fiber. The jet speeds up the process of sucking liquid into the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. X. Zhong, J. Eshraghi, P. Vlachos, S. Dabiri, and A. M. Ardekani, Int. J. Multiphase Flow 132, 103433 (2020). https://doi.org/10.1016/j.ijmultiphaseflow.2020.103433

  2. Jy. Zhang, Yx. Du, Jq. Liu, et al., J. Hydrodyn. 34, 189 (2022). https://doi.org/10.1007/s42241-022-0017-4

    Article  ADS  Google Scholar 

  3. V. M. Chudnovskii, A. A. Levin, V. I. Yusupov, M. A. Guzev, and A. A. Chernov, Int. J. Heat Mass Transfer, No. 150, 119286 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119286

  4. R. V. Fursenko, V. M. Chudnovskii, and S. S. Minaev, Int. J. Heat Mass Transfer 163, 120420 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120420

  5. Tao Lu, Wei Zhang, Fang Chen, and Zhongchi Liu, Microfluid. Nanofluid. 20, 10 (2016). https://doi.org/10.1007/s10404-015-1692-z

    Article  Google Scholar 

  6. C.-D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, Appl. Phys. Lett. 89, 074102 (2006).

  7. B. Christos, K. Ioannis, S. Efthymis, and Z. Ioanna, Microfluid. Nanofluid. 16, 493 (2014).

    Article  Google Scholar 

  8. V. Robles, E. Gutierrez-Herrera, L. F. Devia-Cruz, D. Banks, S. Camacho-Lopez, and G. Aguilar, Phys. Fluids 32, 042005 (2020). https://doi.org/10.1063/5.0007164

  9. S. D. George, S. Chidangil, and D. Mathur, Langmuir 35, 010139 (2019).

  10. I. A. Abushkin, V. M. Chudnovskii, M. A. Guzev, Yu. A. Polyaev, and R. V. Garbuzov, Bull. Exp. Biol. Med. 174 (3) (2023). https://doi.org/10.1007/s10517-023-05716-2

  11. V. Yusupov and V. Chudnovskii, J. Acoust. Soc. Am. 153, 1525 (2023). https://doi.org/10.1121/10.0017436

    Article  ADS  PubMed  Google Scholar 

  12. Chan Kin Foong, T. J. Pfefer, J. M. H. Teichman, and A. J. Welch, J. Endourology, 257 (2001). https://doi.org/10.1089/089277901750161737

  13. Sh.-P. Wang, Q. Wang, A.-M. Zhang, and E. Stride, Int. J. Multiphase Flow 121, 103096 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.103096

  14. D. Horvat, U. Orthaber, J. Schillec, L. Hartwigc, U. Loschner, A. Vrecko, and R. Petkovšek, Int. J. Multiphase Flow 100, 119 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.010

    Article  MathSciNet  CAS  Google Scholar 

  15. R. Deng, Y. He, Y. Qin, Q. Chen, and L. Chen, J. Remote Sens. 16, 192 (2012).

    Article  Google Scholar 

  16. W. H. Lee, in Multiphase Transport Fundamentals, Reactor Safety, Applications, Ed. by T. Veziroglu (Hemisphere, New York, 1980), Vol. 1, p. 407.

    Google Scholar 

Download references

Funding

This work was carried out with financial support from the Russian Science Foundation, project no. 22-19-00189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chudnovskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudnovskii, V.M., Guzev, M.A., Dats, E.P. et al. The Effect of Accelerated Absorption of Liquid in a Tube during Laser Cavitation on a Laser Heating Element. Dokl. Phys. 68, 376–381 (2023). https://doi.org/10.1134/S1028335823110046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335823110046

Keywords:

Navigation