Skip to main content
Log in

The Dam-Break Problem in a Semi-Open Channel

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the nonclassical dam-break problem in a semi-open rectangular channel in the first approximation of the shallow water theory when the liquid is under the lid in the upper pool of the dam (i.e., it completely fills a semi-infinite rectangular container) and the liquid surface is free in the bottom pool. It is shown that there is a unique piecewise constant self-similar solution to this problem, in which the hydraulic bore in the bottom pool of the dam is modeled by a shock wave, the descent wave in the upper pool of the dam is modeled by a strong discontinuity (when passing through which the total energy of the liquid flow is conserved), while the flow in the region between the hydraulic bore and the descent wave is approximated by a constant solution. Experimental modeling of this problem will make it possible to obtain wave flows that arise when liquid flows out of a rectangular container, a special case of which is the classical Benjamin flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. T. B. Benjamin, J. Fluid Mech. 31, 209 (1968). https://doi.org/10.1017/S0022112068000133

    Article  ADS  Google Scholar 

  2. G. B. Wallis, C. J. Crowly, and Y. Hagi, J. Fluid Mech. 99, 405 (1977). https://doi.org/10.1115/1.3448775

    Article  Google Scholar 

  3. D. L. Wilkinson, J. Fluid Mech. 118, 109 (1982). https://doi.org/10.1017/S0022112082000986

    Article  ADS  Google Scholar 

  4. W. D. Baines and D. L. Wilkinson, J. Hydraul. Res. 25, 157 (1986). https://doi.org/10.1080/00221688609498539

    Article  Google Scholar 

  5. W. D. Baines, J. Hydraul. Eng. 117, 1600 (1991).

    Article  Google Scholar 

  6. W. H. Hager, Int. J. Multiphase Flow 25, 349 (1999). https://doi.org/10.1016/S0301-9322(98)00046-9

    Article  Google Scholar 

  7. H. B. Atrabi, S. M. Asce, T. Hosoda, and A. Tada, J. Hydraul. Eng. 141, 1 (2015). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000953

    Article  Google Scholar 

  8. Z. Borden and E. Meiburg, J. Fluid Mech. 726, R1 (2013). https://doi.org/10.1017/jfm.2013.239

    Article  ADS  Google Scholar 

  9. P. G. Baines, J. Fluid Mech. 787, 1 (2016). https://doi.org/10.1103/PhysRevFluids.5.074803

    Article  ADS  MathSciNet  Google Scholar 

  10. N. A. Konopliv, S. G. Smith, J. N. McElwaine, and E. Meiburg, J. Fluid Mech. 789, 806 (2016). https://doi.org/10.1017/jfm.2015.755

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Ungarish and A. J. Hogg, J. Fluid Mech. 846, 654 (2018). https://doi.org/10.1017/jfm.2018.219

    Article  ADS  MathSciNet  Google Scholar 

  12. V. V. Ostapenko, J. Fluid Mech. 893, R1 (2020). https://doi.org/10.1017/jfm.2020.258

    Article  ADS  Google Scholar 

  13. V. V. Ostapenko, Dokl. Phys. 63, 33 (2018). https://doi.org/10.1134/S1028335818010044

    Article  ADS  Google Scholar 

  14. K. O. Friedrichs, Commun. Pure Appl. Math. 1, 109 (1948).

    Article  Google Scholar 

  15. V. V. Ostapenko, Phys. Fluids 33, 047106 (2021). https://doi.org/10.1063/5.0045260

  16. J. J. Stocker, Water Waves: The Mathematical Theory with Applications (Wiley-Intersc., New York, 1957).

    Google Scholar 

  17. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (Soc. Ind. Appl. Math., Philadelphia, 1972). https://doi.org/10.1137/1.9781611970562

    Book  Google Scholar 

  18. K. O. Friedrichs and P. D. Lax, Proc. Natl. Acad. Sci. U. S. A. 68, 1686 (1971). https://doi.org/10.1073/pnas.68.8.1686

    Article  ADS  Google Scholar 

  19. V. T. Chow, Open-Channel Hydraulics (McGraw-Hill, New York, 1959).

    Google Scholar 

  20. V. V. Ostapenko and O. A. Kovyrkina, J. Fluid Mech. 816, 442 (2017). https://doi.org/10.1017/jfm.2017.83

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to O.A. Kovyrkina and N.A. Khandeeva for help in preparing this material for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ostapenko.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapenko, V.V. The Dam-Break Problem in a Semi-Open Channel. Dokl. Phys. 67, 480–485 (2022). https://doi.org/10.1134/S1028335822120059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822120059

Keywords:

Navigation