Skip to main content
Log in

A Thermal Protective Respirator Based on Granular Phase Change Materials

  • TECHNICAL SCIENCE
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract—

In this paper, we propose to use thermal-protective respirators based on granular phase change materials to protect the respiratory organs from dangerously high temperatures of inhaled air during fires and other emergencies. We demonstrate the possibility of creating such personal protective equipment based on known materials using a numerical experiment. In this case, the insignificant mass of the cooling element based on granular phase change material makes it possible to combine it with a gas and smoke protective element and create combined respirators that protect against both high temperatures and toxic combustion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. K. Shirani, B. Pruitt, and A. Mason, Ann. Surg. 205, 82 (1987).

    Article  Google Scholar 

  2. D. Smith, B. Cairns, F. Ramadan, et al., J. Trauma 37, 655 (1994).

    Article  Google Scholar 

  3. Y. Zhu, J. Xiao, T. Chen, A. Chen, et al., Appl. Therm. Eng. 155, 631 (2019). https://doi.org/10.1016/j.applthermaleng.2019.04.014

    Article  ADS  Google Scholar 

  4. B. Zalba, J. M. Marin, L. F. Cabeza, et al., Appl. Therm. Eng. 23, 251 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  Google Scholar 

  5. H. Peng, R. Li, X. Ling, and H. Dong, Appl. Energy 160, 1 (2015). https://doi.org/10.1016/j.apenergy.2015.09.029

    Article  Google Scholar 

  6. R. I. Nigmatulin, Fundamentals of Heterogeneous Media Mechanics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  7. A. A. Samarskii and P. N. Vabishchevich, Mathematical Modelling, Vol. 1: Computational Heat Transfer (Editorial URSS, Moscow, 2003; Wiley, New York, 1996).

  8. V. A. Levin, N. A. Lutsenko, and S. S. Fetsov, Dokl. Phys. 63, 158 (2018). https://doi.org/10.1134/S102833581804002X

    Article  ADS  Google Scholar 

  9. N. A. Lutsenko and S. S. Fetsov, Int. J. Comp. Meth. 17, 1950010 (2020). https://doi.org/10.1142/S0219876219500105

  10. N. A. Lutsenko, Dokl. Phys. 65, 123 (2020). https://doi.org/10.1134/S1028335820030106

    Article  ADS  Google Scholar 

  11. http://www.pcmproducts.net.

Download references

ACKNOWLEDGMENTS

The results were obtained using the equipment of the Shared Resource Center “Far Eastern Computing Resource” IACP FEB RAS.

Funding

This study was supported by the Russian Science Foundation, grant no. 22-29-01129, https://rscf.ru/en/project/22-29-01129/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Lutsenko or S. S. Fetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutsenko, N.A., Fetsov, S.S. A Thermal Protective Respirator Based on Granular Phase Change Materials. Dokl. Phys. 67, 486–490 (2022). https://doi.org/10.1134/S1028335822120035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822120035

Keywords:

Navigation