Skip to main content
Log in

The Problem of Derivation of the Magnus Formula

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

On the basis of the condition of the flow potentiality of the hydrodynamic stream flowing around a stationary rotating ball, a detailed analytical derivation of the formula for the Magnus force describing the nondissipative lateral impact from the direction of the progressively moving viscous flow is given for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. B. Robins, New Principles of Gunnery: Containing the Determination of the Force of Gun-powder, and an Investigation of the Difference in the Resisting Power of the Air to Swift and Slow Motions (J. Nourse, London, 1742).

    Google Scholar 

  2. G. Magnus, Abhandl. Konig. Akad. Wissensch. Berlin, 1 (1852).

    Google Scholar 

  3. G. Magnus, Ann. Phys. 164, 1 (1853).

    Article  Google Scholar 

  4. J. W. Rayleigh, Messenger Math. 7, 14 (1877).

    Google Scholar 

  5. A. Lafay, C. R. Acad. Sci. 151, 32 (1910).

    Google Scholar 

  6. J. C. Martin, Report No. 870 (BRL, Aberdeen Proving Ground, Maryland, USA, 1955).

  7. A. S. Platou, AIAA J. 3, 83 (1960).

    Article  ADS  Google Scholar 

  8. I. D. Jacobson, Report No. AG-171 (AGARDograp, 1970).

  9. H. Dwyer and B.R. Sander, AIAA J. 14, 498 (1976).

    Article  ADS  Google Scholar 

  10. B. R. Sander and H. Dwyer, AIAA J. 14, 576 (1976).

    Article  ADS  Google Scholar 

  11. W. B. Sturek, H. Dwyer, L. Kayser, C. Nietubicz, R. Reklis, and K. Opalka, AIAA J. 16, 687 (1978).

    Article  ADS  Google Scholar 

  12. W. B. Sturek and L. Schiff, AIAA Paper No. 80-1586 (1980).

  13. Elemetary Handbook on Physics, Vol. 1: Mechanics. Heat. Molecular Physics, Ed. by G. S. Landsberg (Nauka, Moscow, 1984), p. 370 [in Russian].

    Google Scholar 

  14. M. V. Semenov and A. A. Yakuta, Continuum Mechanics. Lecture Experiment, Ed. by V. A. Aleshkevich (Mosk. Gos. Univ., Moscow, 1999), p. 56 [in Russian].

    Google Scholar 

  15. M. Péchier, P. Guillen, and R. Cayzac, AIAA J. Spacecr. Rockets 38, 542 (2001).

    Article  ADS  Google Scholar 

  16. J. de Spirito and K. R. Heavy, AIAA Paper No. 2004-4713 (2004).

  17. R. Cayzac, E. Carette, D. Pascal, and P. Guillen, J. Appl. Mech. 78, 051005 (2011).

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  19. S. O. Gladkov, Russ. Phys. J. 61, 1117 (2018).

    Article  Google Scholar 

  20. S. O. Gladkov and Aung Zaw, Russ. Phys. J. 63, 2122 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Associate Professor of MAI S.B. Bogdanova for providing the drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Gladkov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkov, S.O. The Problem of Derivation of the Magnus Formula. Dokl. Phys. 67, 451–453 (2022). https://doi.org/10.1134/S1028335822110040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822110040

Keywords:

Navigation