Skip to main content
Log in

Gas-Jet Synthesis of Diamond Coatings from a H2+CH4+Ar Mixture Activated in a Microwave Discharge

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this study, a gas-jet diamond synthesis method using a high-speed jet for the transportation of gases activated in microwave plasma of gases to a substrate was developed. Diamond was synthesized in a hydrogen–methane–argon mixture. The diamond synthesis rate (130 µm/h) exceeded the rate attained in earlier gas-jet experiments with activation in microwave plasma without argon additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. R. A. Khmelnitskiy, Phys. Usp. 58, 134 (2015). https://doi.org/10.3367/UFNe.0185.201502b.0143

    Article  ADS  Google Scholar 

  2. K. F. Sergeichev, Usp. Prikl. Fiz. 3, 342 (2015).

    Google Scholar 

  3. J. E. Butler, Y. A. Mankelevich, A. Cheesman, et al., J. Phys.: Condens. Matter 21, 364201 (2009). https://doi.org/10.1088/0953-8984/21/36/364201

  4. A. Tallaire, J. Achard, F. Silva, et al., C. R. Phys. 14, 169 (2013). https://doi.org/10.1016/j.crhy.2012.10.008

    Article  ADS  Google Scholar 

  5. A. P. Bolshakov, V. G. Ralchenko, V. Y. Yurov, et al., Diamond Rel. Mater. 62, 49 (2016). https://doi.org/10.1016/j.diamond.2015.12.001

    Article  ADS  Google Scholar 

  6. A. K. Rebrov, M. S. Bobrov, A. A. Emelyanov, et al., Interfacial Phenom. Heat Transfer 7, 131 (2019). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2019031315

    Article  Google Scholar 

  7. A. K. Rebrov, A. A. Emel’yanov, M. Yu. Plotnikov, N. I. Timoshenko, and I. B. Yudin, Dokl. Phys. 65, 23 (2020). https://doi.org/10.1134/S1028335820010127

    Article  ADS  Google Scholar 

  8. A. A. Emelyanov, V. A. Pinaev, M. Yu. Plotnikov, et al., J. Phys. D: Appl. Phys. 55, 205202 (2022). https://doi.org/10.1088/1361-6463/ac526e

  9. A. A. Emel’yanov, M. Yu. Plotnikov, A. K. Rebrov, et al., No. 1, 106 (2021). https://doi.org/10.31857/S0568528121010035

  10. M. Yu. Hrebtov and M. S. Bobrov, J. Phys: Conf. Ser. 1359, 012010 (2019). https://doi.org/10.1088/1742-6596/1382/1/012010

  11. Yu. A. Mankelevich, M. N. R. Ashfold, and J. Ma, J. Appl. Phys. 104, 113304 (2008). https://doi.org/10.1063/1.3035850

  12. B. Bai, H. H. Sawin, and B. A. Cruden, J. Appl. Phys. 99, 013308 (2006). https://doi.org/10.1063/1.2159545

  13. G. Lombardi, F. Benedic, F. Mohasseb, et al., Plasma Sources Sci. Technol. 13, 375 (2004). https://doi.org/10.1088/0963-0252/13/3/003

    Article  ADS  Google Scholar 

  14. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed. (Nauka, Moscow, 1972; Halsted Press, New York, 1975).

  15. C. E. Johnson, W. A. Weimer, and F. M. Cerio, J. Mater. Res. 7, 1427 (1992). https://doi.org/10.1557/JMR.1992.1427

    Article  ADS  Google Scholar 

  16. Y.-S. Han, Y.-K. Kim, and J.-Y. Lee, Thin Solid Films 310, 39 (1997). https://doi.org/10.1016/S0040-6090(97)00339-8

    Article  ADS  Google Scholar 

  17. J. Ma, M. N. R. Ashfold, and Y. A. Mankelevich, J. Appl. Phys. 105, 043302 (2009). https://doi.org/10.1063/1.3078032

  18. A. N. Goyette, J. E. Lawler, L. W. Anderson, et al., Plasma Sources Sci. Technol. 7, 149 (1998). https://doi.org/10.1088/0963-0252/7/2/009

    Article  ADS  Google Scholar 

  19. A. Tallaire, J. Achard, F. Silva, O. Brinza, and A. Gicquel, C. R. Phys. 14, 169 (2013). https://doi.org/10.1016/j.crhy.2012.10.008

    Article  ADS  Google Scholar 

  20. Q. Liang, C. Y. Chin, J. Lai, C. S. Yan, Y. Meng, H. K. Mao, and R. J. Hemley, Appl. Phys. Lett. 94, 024103 (2009). https://doi.org/10.1063/1.3072352

Download references

Funding

This study was conducted as a State Assignment (budget grant no. 121031800218-5) and was supported financially by the Russian Foundation for Basic Research (project no. 18-29-19069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rebrov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebrov, A.K., Emel’yanov, A.A., Pinaev, V.A. et al. Gas-Jet Synthesis of Diamond Coatings from a H2+CH4+Ar Mixture Activated in a Microwave Discharge. Dokl. Phys. 67, 197–200 (2022). https://doi.org/10.1134/S1028335822070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822070047

Keywords:

Navigation