Skip to main content
Log in

Glasgow-2021: The Difficult Road to the 1.5°С Goal

  • TECHNICAL SCIENCES
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The possible consequences of decisions of the 26th Conference of the Parties to the UN Framework Convention on Climate Change (Glasgow, 2021) for the world energy and anthropogenic climate changes are investigated. A group of scenarios of the anthropogenic impact on the global climate system is proposed including the implementation of Glasgow solutions in the field of decarbonization of the world economy, reduction of methane emissions, and reforestation. It is shown that there is a technical potential for implementing the Glasgow decisions, but the desired pace of reformation of the world energy and the entire economy is unprecedented on a historical scale. Using the global carbon cycle and climate models developed at MPEI, the changes in the chemical composition, the thermal radiative balance of the Earth’s atmosphere, and the global average air temperature for each of the scenarios are calculated. It is shown that the implementation of the entire range of measures proposed in Glasgow for reducing the anthropogenic impact on the planetary climate system can limit the warming to within 1.5°C of the pre-industrial level, but there are serious doubts about the practical implementation of the proposed program of decarbonization of the world economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. Michaelowa, Intereconomics 56, 302 (2021). https://doi.org/10.1007/s10272-021-1004-7

    Article  Google Scholar 

  2. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, Dokl. Phys. 61, 301 (2016). https://doi.org/10.1134/S1028335816060070

    Article  ADS  Google Scholar 

  3. V. V. Klimenko, A. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, Therm. Eng. 63, 605 (2016). https://doi.org/10.1134/S0040601516090020

    Article  Google Scholar 

  4. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, Appl. Energy 64, 311 (1999). https://doi.org/10.1016/S0306-2619(99)00104-X

    Article  Google Scholar 

  5. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, Izv., Atmos. Ocean. Phys. 56, 405 (2020). https://doi.org/10.1134/S0001433820040039

    Article  Google Scholar 

  6. V. V. Klimenko, A. V. Klimenko, A. G. Tereshin, and O. V. Mikushina, Therm. Eng. 69, 149 (2022). https://doi.org/10.1134/S0040601522030065

    Article  Google Scholar 

  7. J. Falk, O. Gaffney, A. K. Bhowmik, C. Borgström-Hansson, C. Pountney, D. Lundén, E. Pihl, J. Malmodin, J. Lenhart, K. Jónás, M. Höjer, P. Bergmark, S. Sareen, S. Widforss, S. Henningsson, S. Plitt, and T. Shalit, Exponential Climate Action Roadmap (Future Earth, Stockholm, Sweden, 2018).

    Google Scholar 

  8. Energy Technology Perspectives 2020 (IAE, Paris, 2020).

  9. A. A. Makarov, T. A. Mitrova, and V. A. Kulagin, Russ. J. Econ. 6, 347 (2020). https://doi.org/10.32609/j.ruje.6.55196

    Article  Google Scholar 

  10. K. I. Vatalis, G. Avlogiaris, and T. Tsalis, J. Environ. Manage. 309, 114713 (2022). https://doi.org/10.1016/j.jenvman.2022.114713

  11. A. G. Olabi and M. A. Abdelkareem, Renewable Sustainable Energy Rev. 158, 112111 (2022). https://doi.org/10.1016/j.rser.2022.112111

  12. Climate Change 2013. The Physical Science Basis, Contribution of Working Group 1 to the 5th Assesssment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Cambridge Univ. Press, Cambridge, UK, 2013).

    Google Scholar 

  13. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, Proc. SPIE 10466, 1 (2017). https://doi.org/10.1117/12.2287753

    Article  Google Scholar 

  14. V. V. Klimenko, Dokl. Earth Sci. 440, 1419 (2011).

    Article  ADS  Google Scholar 

  15. V. Smil, Sci. Am. 282, 52 (2014). https://doi.org/10.1038/SCIENTIFICAMERICAN0114-52

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work used data from the UN Statistical and Demographic Departments (UN, https://data.un.org/), British Petroleum (BP, https://www.bp.com), the database for global atmospheric research of the European Commission EDGAR (https://edgar.jrc.ec.europa.eu), the US Carbon Dioxide Information and Analysis Center (CDIAC, http://cdiac.ornl.gov), IPCC (http://www.ipcc.ch), the US National Atmospheric and Oceanic Administration (NOAA/ESRL, ftp://aftp.cmdl.noaa.gov/products/trends/), the University of East Anglia Climate Research Unit (CRU, http://www.cru.uea.ac.uk/cru/data/temperature/ ), the Global Carbon Capture and Storage Institute (GCCSI, http://www.globalccsinstitute.com), the UN Forestry and Agriculture Organization (FAO, http://www.fao.org/faostat/), and the European Data Bank for Climate Research WMO (KNMI, https://climexp.knmi.nl).

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00721 in part of climate studies, and by the Russian Foundation for Basic Research, project no. 20-08-00320 in part of energy studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Klimenko or A. G. Tereshin.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Mikushina, O.V. & Tereshin, A.G. Glasgow-2021: The Difficult Road to the 1.5°С Goal. Dokl. Phys. 67, 215–221 (2022). https://doi.org/10.1134/S1028335822070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822070023

Keywords

Navigation