Skip to main content
Log in

Rupture of a Subsiding Splash: A Dynamic Wake of the Freely Falling Drop Merger with a Target Fluid at Rest

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The shape evolution of a subsiding splash of a freely falling drop (the diameter is D = 0.42 cm, and the contact velocity is U = 3.1 m/s) in the mode of active generation of sound packets was traced by high-speed video recording. The shape of the splash is continuously transformed as it spreads. During the formation of the second cavity, the splash base pinches off the depression bottom of the deformed surface of the target fluid. A third cavity is formed when the top of the splash is immersed. A returning droplet, which has previously flown out from the top of the splash and which by its lateral surface is in contact with the walls of the remnant of the third cavity, forms the fourth cavity. The shape of the last cavity is distorted by thin flows that are accelerated by the fast conversion of the available potential surface energy (APSE) when the free surfaces of the merging fluids are eliminated. A rupture in the base of the subsiding splash was observed in all experiments of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. J. Thomson and H. F. Newall, Proc. R. Soc. London 29, 417 (1885). https://doi.org/10.1098/rspl.1885.0034

    Article  Google Scholar 

  2. A. M. Worthington and R. S. Cole, Phil. Trans. R. Soc. London, Ser. A 189, 137 (1897). https://doi.org/10.1098/rsta.1897.0005

    Article  ADS  Google Scholar 

  3. J. Shin and T. A. McMahon, Phys. Fluids A 2, 1312 (1990). https://doi.org/10.1063/1.857581

    Article  ADS  Google Scholar 

  4. Yu. D. Chashechkin, Prikl. Mat. Mekh. 83, 403 (2019). https://doi.org/10.1134/S0032823519030032

    Article  Google Scholar 

  5. E. Castillo-Orozco, A. Davanlou, P. K. Choudhury, and R. Kumar, Phys. Rev. E 92, 053022 (2015). https://doi.org/10.1103/PhysRevE.92.053022

  6. A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shi-motake, and Y. Satou, Particul. Sci. Technol. 24, 181 (2006). https://doi.org/10.1080/02726350500544224

    Article  Google Scholar 

  7. V. V. Maier, Cumulative Effect in Simple Experiments (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  8. Y. K. Cai, Exp. Fluids 7, 388 (1989). https://doi.org/10.1007/BF00193420

    Article  Google Scholar 

  9. G.-J. Michon, C. Josserand, and T. Séon, Phys. Rev. Fluids, 023601 (2017). https://doi.org/10.1103/PhysRevFluids.2.023601

  10. B. Ray, G. Biswas, and A. Sharma, J. Fluid Mech. 768, 492 (2015). https://doi.org/10.1017/jfm.2015.108

    Article  ADS  Google Scholar 

  11. Y. D. Chashechkin, Axioms 10, 286 (2021). https://doi.org/10.3390/axioms10040286

    Article  Google Scholar 

  12. F. Veron, Ann. Rev. Fluid Mech. 47, 507 (2015). https://doi.org/10.1146/annurev-fluid-010814-014651

    Article  ADS  Google Scholar 

  13. L. Bourouiba, Ann. Rev. Fluid Mech. 53, 473 (2021). https://doi.org/10.1146/annurev-fluid-060220-113712

    Article  ADS  Google Scholar 

  14. R. B. Bhagat, M. S. D. Wykes, and S. B. Dalziel, J. Fluid Mech. 903, F1 (2020). https://doi.org/10.1017/jfm.2020.720

    Article  Google Scholar 

  15. Yu. D. Chashechkin and A. Yu. Ilinykh, Dokl. Phys. 65, 366 (2020). https://doi.org/10.1134/S1028335820100067

    Article  ADS  Google Scholar 

  16. G. Z. Zhu, Z. H. Li, and D. Y. Fu, Chin. Sci. Bull. 53, 1634 (2008). https://doi.org/10.1007/s11434-008-0246

    Article  Google Scholar 

  17. O. V. Rudenko, Dokl. Phys. 65, 160 (2020).

    ADS  Google Scholar 

  18. Yu. D. Chashechkin, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 1 (94), 73 (2021). https://doi.org/10.18698/1812-3368-2021-1-73-92

  19. A. Prosperetti and H. N. Oguz, Ann. Rev. Fluid Mech. 25, 577 (1993). https://doi.org/10.1146/annurev.fl.25.010193.003045

    Article  ADS  Google Scholar 

  20. Yu. D. Chashechkin and V. E. Prokhorov, Dokl. Phys. 60, 355 (2015).

    Article  ADS  Google Scholar 

  21. G. Gillot, C. Derec, J.-M. Genevaux, L. Simon, and L. Benyahia, Phys. Fluids 32, 062004 (2020). https://doi.org/10.1063/5.0010464

  22. A. Wang, C. Kuan, and P. Tsai, Phys. Fluids 25, 101702 (2013). https://doi.org/10.1063/1.482248

  23. Yu. D. Chashechkin and A. Yu. Ilinykh, Dokl. Phys. 67, 15 (2022). https://doi.org/10.1134/S1028335821120028

    Article  ADS  Google Scholar 

  24. E. Q. Li, M.-J. Thoraval, J. O. Marston, and S. T. Tho-roddsen, J. Fluid Mech. 848, 821 (2018). https://doi.org/10.1017/jfm.2018.383

    Article  ADS  Google Scholar 

  25. URF “HPC IPMech RAS” - Unique Research Facility “Hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the transport of impurities in the ocean and atmosphere” IPMech RAS http://www.ipmnet.ru/uniqequip/gfk/#equip.

Download references

ACKNOWLEDGMENTS

The experiments were performed using the TBP Bench of URF “HPC IPMech RAS,” Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences.

Funding

This work was supported within a State Assignment, state registration no. AAAA-A20-120011690131-7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Chashechkin or A. Yu. Il’inykh.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chashechkin, Y.D., Il’inykh, A.Y. Rupture of a Subsiding Splash: A Dynamic Wake of the Freely Falling Drop Merger with a Target Fluid at Rest. Dokl. Phys. 67, 201–208 (2022). https://doi.org/10.1134/S1028335822060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822060039

Keywords:

Navigation