Skip to main content
Log in

Optimal Minimum-Fuel Trajectories of Supersonic Passenger Aircraft

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Using the classical method of dynamic programming, the trajectories of the motion of a supersonic passenger aircraft, which are optimal in terms of fuel consumption, are constructed. The mathematical model of the aircraft, which maximally takes into account the usual restrictions imposed on the allowable maneuvers of the aircraft by its design features, is used. Optimal solutions are found without prior division of the flight into separate sections. Despite the fact that the calculations disregard the limitations imposed by the current flight rules for civil aircraft, it turns out that the optimal trajectories are quite convenient for use within these limitations. It is clarified that the sections of motion with a speed exceeding the speed of sound are at high altitude. It avoids an additional acoustic impact on people living near airports and, at the same time, reduces the fuel consumption. The sections of optimal trajectories corresponding to cruise flight are located at high altitudes and, therefore, the interference with the motion of conventional aircraft can be practically reduced to zero. The initial and final parts of the trajectory located in areas close to airports with high traffic density differ only slightly for various required flight durations and, therefore, require no great accuracy in practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. E. S. Rutowski, J. Aeronaut. Sci. 21, 187 (1954).

    Article  Google Scholar 

  2. N. R. Zagalsky, R. P. Irons, and R. L. Schultz, J. Aircraft 8, 488 (1971).

    Article  Google Scholar 

  3. A. J. Calise, AIAA J. 15, 314 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Erzberger and H. Lee, J. Guidance Control. 3, 78 (1980).

    Article  ADS  Google Scholar 

  5. W. Grimm, K. H. Well, and H. J. Oberle, J. Guidance Control Dyn. 9, 169 (1986).

    Article  ADS  Google Scholar 

  6. T. Raivio, H. Ehtamo, and R. P. Hämäläinen, in System Modelling and Optimization (Springer, Boston, 1996), p. 435.

    MATH  Google Scholar 

  7. J. W. Langelaan, in Proceedings of the AIAA Guidance, Navigation and Control Conference (Hilton Head, South Carolina, 2007), p. 3654.

  8. J. Rosenow, M. Lindner, and J. Scheiderer, Sustainability 13, 1383 (2021).

    Article  Google Scholar 

  9. J. Wan, H. Zhang, F. Liu, W. Lv, and Y. Zhao, J. Adv. Transp. 2020, 1 (2020).

    Google Scholar 

  10. Y. Lim, A. G. M. Gardi, and R. Sabatini, Energy Proc. 110, 446 (2017).

    Article  Google Scholar 

  11. M. V. Díaz, V. F. G. Comendador, J. G. Carretero, and R. M. Valdís, Int. J. Sustain. Transp. 14, 903 (2020).

    Article  Google Scholar 

  12. Y. Li, Z. Zhang, and J. Zhang, J. Phys.: Conf. Ser. 1802, 1 (2021).

    Google Scholar 

  13. M. A. Zubin, F. A. Maksimov, and N. A. Ostapenko, Dokl. Phys. 64, 125 (2019).

    Article  ADS  Google Scholar 

  14. T. G. Elizarova and I. A. Shirokov, Dokl. Math. 98, 648 (2018).

    Article  MathSciNet  Google Scholar 

  15. S. T. Surzhikov, Dokl. Phys. 65, 400 (2020).

    Article  ADS  Google Scholar 

  16. J. Rosenow, S. Förster, M. Lindner, and H. Fricke, Int. Transp. 68, 40 (2016).

    Google Scholar 

  17. A. Murrieta-Mendoza and R. M. Botez, J. Aerospace Inf. Syst. 12, 519 (2015).

    Google Scholar 

  18. S. A. Kumakshev and A. M. Shmatkov, IOP Conf. Ser.: Mater. Sci. Eng. 468, 012033 (2018).

  19. J. Rosenow, D. Strunck, and H. Fricke, CEAS Aeronaut. J. 11, 333 (2020).

    Google Scholar 

  20. R. Alligier, J. Air Transp. 28 (3), 114 (2020).

    Article  Google Scholar 

  21. A. Franco and D. Rivas, J. Guid. Control Dyn. 38, 452 (2015).

    Article  ADS  Google Scholar 

  22. A. Murrieta-Mendoza, C. Romain, and R. M. Botez, Aerospace, No. 7, 99 (2020).

  23. M. Soler, A. Olivares, and E. Staffetti, J. Aircraft 52, 274 (2015).

    Article  Google Scholar 

  24. J. García-Heras, M. Soler, and F. J. Saez, J. Aerospace Inf. Syst. 13, 243 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the staff member of the Zhukovskii Central Aerohydrodynamic Institute N.M. Grevtsov for providing the numerical parameters of the mathematical model of aircraft.

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 21-51-12004, and by the state budget on the topic of a State Assignment (state registration no. AAAA-A20-120011690138-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kumakshev or A. M. Shmatkov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumakshev, S.A., Shmatkov, A.M. Optimal Minimum-Fuel Trajectories of Supersonic Passenger Aircraft. Dokl. Phys. 67, 148–152 (2022). https://doi.org/10.1134/S1028335822050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822050044

Keywords:

Navigation