Skip to main content
Log in

A High-Selectivity Wideband Bandpass Dual-Mode Microstrip Filter

  • TECHNICAL SCIENCES
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A half-wave microstrip resonator design with an irregular strip conductor short-circuited to the screen by its ends has been investigated. Based on the resonances of the first two oscillatory modes of this resonator, a miniaturized second-order filter with a fractional bandwidth from 40% to 90% has been implemented, which has a wide high-frequency stopband. A prototype of the designed eight-order filter based on four dual-mode resonators with a passband center frequency of 2 GHz and a fractional bandwidth of 40% has been fabricated on an alumina substrate 45.0 × 10.5 × 1.0 mm3 in size with a permittivity of ε = 9.8. The filter frequency response slopes are extremely steepness due to two attenuation poles located on the left and right sides of the passband. The experimental characteristics of the prototype are in good agreement with the data of the numerical electromagnetic simulation of the 3D model of the filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. J.-Sh. Hong, Microstrip Filters for RF/Microwave Applications (Wiley, Hoboken, NJ, 2011).

    Book  Google Scholar 

  2. L. Zhu, Microwave Bandpass Filters for Wideband Communications (Wiley, Hoboken, NJ, 2012).

    Book  Google Scholar 

  3. B. A. Belyaev, A. M. Serzhantov, An. A. Leksikov, Ya. F. Bal’va, and R. G. Galeev, Tech. Phys. Lett. 47 (2021, in press).

  4. B. A. Belyaev, A. M. Serzhantov, A. A. Leksikov, Ya. F. Bal’va, and An. A. Leksikov, IEEE Microwave Wireless Compon. Lett. 25, 579 (2015).

    Article  Google Scholar 

  5. B. A. Belyaev, S. A. Khodenkov, I. V. Govorun, and A. M. Serzhantov, Tech. Phys. Lett. 47 (2021, in press).

  6. B. A. Belyaev, V. V. Tyurnev, A. M. Serzhantov, A. A. Leksikov, and An. A. Leksikov, Prog. Electromagn. Res. Lett. 25, 57 (2011).

    Article  Google Scholar 

  7. V. K. Killamsetty and B. Mukherjee, Electron. Lett. 53, 1209 (2017).

    Article  ADS  Google Scholar 

  8. B. A. Belyaev, S. A. Khodenkov, An. A. Leksikov, and V. F. Shabanov, Dokl. Phys. 62, 289 (2017).

    Article  ADS  Google Scholar 

  9. A. A. Aleksandrovsky, B. A. Belyaev, and A. A. Leksikov, J. Commun. Technol. Electron. 48, 358 (2003).

    Google Scholar 

  10. J.-S. Hong and M. J. Lancaster, IEEE Trans. Microwave Theory Technol. 44, 2099 (1996).

    Article  ADS  Google Scholar 

  11. B. A. Belyaev, A. M. Serzhantov, Y. F. Bal’va, V. V. Tyurnev, A. A. Leksikov, and R. G. Galeev, Microwave Opt. Technol. Lett. 56, 2021 (2014).

    Article  Google Scholar 

  12. B. A. Belyaev, A. A. Leksikov, and V. V. Tyurnev, J. Commun. Technol. Electron. 49, 1228 (2004).

    Google Scholar 

Download references

Funding

This study was carried out within a State Assignment, project no. FEFE-2020-0013, of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Khodenkov, S.A., Govorun, I.V. et al. A High-Selectivity Wideband Bandpass Dual-Mode Microstrip Filter. Dokl. Phys. 67, 89–93 (2022). https://doi.org/10.1134/S1028335822020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822020021

Keywords:

Navigation