Skip to main content
Log in

Lidar Monitoring of Moisture in Biological Objects

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

We performed for the first time experiments on laser remote sensing of the moisture content of biological objects essential for the agricultural industry. Probing was carried out using a fluorescence lidar based on a pulsed solid-state laser (527 nm, 5 ns, 1 kHz, 200 μJ/pulse), developed at the Prokhorov General Physics Institute, Russian Academy of Sciences, and a gated intensified charge coupled device camera. The spectra of laser fluorescence of various biological objects of plant origin were recorded at different humidity values. The loss of water was accompanied by the degradation of biological pigments, causing an uneven increase in the intensity of bands in the fluorescence spectrum for different spectral ranges. The ratio of the spectral bands of chlorophyll a (680 nm) and protochlorophyllide (630 nm) has the best correlation with residual moisture, which opens up a promising direction for lidar measurement and monitoring of moisture/dry matter in silage or perennial grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. Driehuis, Agric. Food Sci. 22, 16 (2013).

    Article  Google Scholar 

  2. E. A. Nikitin, Innov. Sel’sk. Khoz-ve, No. 2, 53 (2019).

    Google Scholar 

  3. V. V. Kirsanov et al., Agroinzheneriya 1 (1), 10 (2021).

    Google Scholar 

  4. J. Kanski, J. B. Pys, and P. Gorka, J. Anim. Feed Sci. 22, 360 (2013).

    Article  Google Scholar 

  5. Yu. I. Blokhin, Kormoproizvodstvo, No. 6, 39 (2018).

    Google Scholar 

  6. G. Rego et al., Comput. Electron. Agric. 175, 105578 (2020).

    Article  Google Scholar 

  7. V. N. Lednev et al., Opt. Lett. 41, 4625 (2016).

    Article  ADS  Google Scholar 

  8. J. H. Churnside, Proc. SPIE 53, 51405 (2013).

    Google Scholar 

  9. S. M. Pershin, Phys. Vibr. 9, 192 (2001).

    Google Scholar 

  10. A. N. Misra, M. Misra, and R. Singh, Biophysics, Ed. by A. N. Misra (InTech Open Access, Rijeka, 2012), p. 171.

    Book  Google Scholar 

  11. M. Ya. Grishin, Phys. Dokl. 66 (2021, in press).

  12. A. F. Bunkin et al., Phys. Wave Phenom. 18, 230 (2010).

    Article  ADS  Google Scholar 

  13. S. M. Pershin et al., Phys. Wave Phenom. 20, 212 (2012).

    Article  ADS  Google Scholar 

  14. B. Mysliwa-Kurdziel et al., Photochem. Photobiol. 78, 205 (2003).

    Article  Google Scholar 

  15. R. Pedrós et al., Photochem. Photobiol. Sci. 7, 498 (2008).

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant in the form of a subsidy aimed at carrying out large scientific projects in priority areas of scientific and technological development (agreement no. 075-15-2020-774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Grishin.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, M.Y., Lednev, V.N., Sdvizhenskii, P.A. et al. Lidar Monitoring of Moisture in Biological Objects. Dokl. Phys. 66, 273–276 (2021). https://doi.org/10.1134/S1028335821100050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821100050

Keywords:

Navigation