Skip to main content
Log in

Visualization of Media Contact Areas in Drop Impact Flows with Chemical Reactions

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

For the first time, the process of merging a drop of ferric chloride solution (concentration 16 and 1%) with a solution of ammonium thiocyanate (20%), including the formation and restructuring of a system of inclined loops on the surface of the cavity, visualized by the products of a chemical reaction, was recorded on video. The brightly colored iron thiocyanate solution formed during the merging of liquids lands into primary contact droplets and groups of subsequent splashes. Fibers containing iron thiocyanate form linear and mesh structures on the walls of the cavity and crown. Ledges and small annular legged vortices are formed at the bottom of the cavity, under the mesh nodes. During the cavity collapse, the ledges extend into inclined loops up to 4.6 mm long, which penetrate into the target fluid. As the flow evolves, the fibers rearrange, forming new structures. Finely colored areas persist for a long time and spread out under the influence of diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. D. Chashechkin and A. Yu. Ilynykh, FDMP 16, 801 (2020).

    Google Scholar 

  2. A. Prosperetti and H. N. Oguz, Ann. Rev. Fluid Mech. 25, 577 (1993).

    Article  ADS  Google Scholar 

  3. A. M. Worthington, A Study of Splashes (Longmans Green, London, 1908).

    Google Scholar 

  4. D. F. S. Ribeiro, R. R. André, F. R. R. Silva, and M. R. O. Panão, Appl. Sci. 10, 6698 (2020).

    Article  Google Scholar 

  5. L. V. Zhang, J. Toole, K. Fezzaa, and R. D. Deegan, J. Fluid Mech. 690, 5 (2012).

    Article  ADS  Google Scholar 

  6. G. Agbaglah, M. Thoraval, S. Thoroddsen, L. Zhang, K. Fezzaa, and R. Deegan, J. Fluid Mech. 764, R1 (2015).

    Article  Google Scholar 

  7. Yu. D. Chashechkin and A. Yu. Ilinykh, Dokl. Phys. 65, 75 (2020).

    Article  ADS  Google Scholar 

  8. O. G. Engel, J. Appl. Phys. 37, 1798 (1966).

    Article  ADS  Google Scholar 

  9. Yu. D. Chashechkin and V. E. Prokhorov, Dokl. Phys. 58, 296 (2013).

    Article  ADS  Google Scholar 

  10. E. Castillo-Orozco, A. Davanlou, P. K. Choudhury, and R. Kumar, Phys. Rev. E 92, 053022 (2015).

    Article  ADS  Google Scholar 

  11. G.-Z. Zhu, Z.-H. Li, and D.-Y. Fu, Chin. Sci. Bull. 53, 1634 (2008).

    Google Scholar 

  12. N. E. Ersoy and M. Eslamiana, Phys. Fluids 31, 012107 (2019).

    Article  ADS  Google Scholar 

  13. Yu. D. Chashechkin, Vestn. MGTU im. N.E. Baumana, Estestv. Nauki, No. 1 (94), 73 (2021).

    Google Scholar 

  14. O. V. Rudenko, Dokl. Phys. 65, 169 (2020).

    Article  Google Scholar 

  15. Yu. D. Chashechkin, Mathematics 9 (586) (2021).

  16. E. Berberović, N. P. van Hinsberg, S. Jakirlic, I. V. Roisman, and C. Tropea, Phys. Rev. E 79, 036306 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. Yu. D. Chashechkin and A. Yu. Ilinykh, Dokl. Phys. 63, 282 (2018).

    Article  ADS  Google Scholar 

  18. Yu. D. Chashechkin and A. Yu. Ilinykh, Dokl. Phys. 66, 20 (2021).

    Article  ADS  Google Scholar 

  19. Yu. D. Chashechkin and A. Yu. Il’inykh, Dokl. Phys. 66 (2021, in press).

  20. E. Villermaux, Ann. Rev. Fluid Mech. 51, 245 (2019).

    Article  ADS  Google Scholar 

  21. K. Tsuji and S. C. Müller, J. Phys. Chem. Lett. 3, 977 (2012).

    Article  Google Scholar 

  22. S. C. Müller, The Micro-World Observed by Ultra High-Speed Cameras (Springer, Cham, 2018).

    Google Scholar 

  23. K. Haldar and S. Chakrabort, Phys. Fluids 31, 072102 (2019).

    Article  ADS  Google Scholar 

  24. The hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the spread of impurities in the ocean and atmosphere. http://www.ipmnet.ru/uniqequip/gfk/#equip.

  25. Lauda. http://www.lauda-scientific.de/en/products/tensiometers.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00598. The experiments were conducted at the workbench of the Unique Research Facility, Hydrophysical Complex, Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Chashechkin or A. Yu. Ilinykh.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chashechkin, Y.D., Ilinykh, A.Y. Visualization of Media Contact Areas in Drop Impact Flows with Chemical Reactions. Dokl. Phys. 66, 285–292 (2021). https://doi.org/10.1134/S1028335821100013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821100013

Keywords:

Navigation