Skip to main content
Log in

A Thin Semiconductor Quantum Ring as an Analog of a Magnetically Controlled Bohr Atom

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Integer quantization of the orbital momentum of an electron (the main specific feature of a semiclassical Bohr atom) can be implemented in a thin semiconductor quantum ring. Due to the presence of two nonequivalent heterointerfaces, this ring exhibits unique selection rules, which make it possible to reduce the ring spectrum to a single one-electron state with predefined quantum numbers, completely controlled by a magnetic field. By varying the field, one can form in the ring states with the necessary quantum numbers in advance and induce the required transitions between these states. The energy characteristics of these transitions is discussed. It is established that there exists a theoretical possibility for converting thermal energy into energy of directed monochromatic radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Viefers, P. Koskinen, P. Singha Deo, and M. Manninen, Phys. E (Amsterdam, Neth.) 21 (1), 1 (2004). https://doi.org/10.1016/j.physe.2003.08.076

  2. M. Manninen, S. Viefers, and S. M. Reimann, Phys. E (Amsterdam, Neth.) 46, 119 (2012). https://doi.org/10.1016/j.physe.2012.09.013

  3. M. Kammermeier, A. Seith, P. Wenk, and J. Schliemann, Phys. Rev. B 101, 195418 (2020); arXiv: 2001.06571. https://doi.org/10.1103/PhysRevB.101.195418

  4. B. Li, W. Magnus, and F. M. Peeters, J. Phys.: Conf. Ser. 210, 012030 (2010).

    Google Scholar 

  5. J. M. Lia and P. I. Tamborenea, Phys. E (Amsterdam, Neth.) 126, 114419 (2020). https://doi.org/10.1016/j.physe.2020.114419

  6. V. K. Kozin, I. V. Iorsh, O. V. Kibis, and I. A. Shelykh, Phys. Rev. B 97, 035416 (2018). https://doi.org/10.1103/PhysRevB.97.035416

    Article  ADS  Google Scholar 

  7. A. M. Mandel’, V. B. Oshurko, S. M. Pershin, E. E. Karpova, and G. D. Artemova, Dokl. Phys. 66 (2021, in press).

  8. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel’, Dokl. Phys. 47, 725 (2002).

    Article  ADS  Google Scholar 

  9. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel’, Theor. Math. Phys. 164, 960 (2010).

    Article  Google Scholar 

  10. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981).

    Google Scholar 

  11. I. Vurgaftman, J. R. Meyer, and R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001). https://doi.org/10.1063/1.1368156

    Article  ADS  Google Scholar 

  12. A. M. Mandel’, V. B. Oshurko, G. I. Solomakho, and A. A. O. Sharts, J. Commun. Technol. Electron. 60, 1117 (2015). https://doi.org/10.1134/S1064226915100101

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 20-07-00983А and 18-52-16016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Mandel, V. B. Oshurko or S. M. Pershin.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandel, A.M., Oshurko, V.B. & Pershin, S.M. A Thin Semiconductor Quantum Ring as an Analog of a Magnetically Controlled Bohr Atom. Dokl. Phys. 66, 253–256 (2021). https://doi.org/10.1134/S1028335821090020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821090020

Keywords:

Navigation