Skip to main content
Log in

Ultracompact Fluorescence Lidar Based on a Diode Laser (405 nm, 150 mW) for Remote Sensing of Waterbodies and the Underlying Surface from Unmanned Aerial Vehicles

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

We report on developing an ultracompact (∼300 g) fluorescence lidar based on a diode laser (405 nm, 150 mW) and a diffraction spectrometer equipped with a linear photodiode array. Field tests have been performed on remote sensing of vegetation from a quadcopter. The field tests have shown the prospects of autonomous lidar monitoring for early disease detection in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Bunkin and K. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, New York, 2001).

    Google Scholar 

  2. G. Cecchi, M. Bazzani, L. Pantani, P. Mazzinghi, and V. Raimondi, Proc. SPIE 2585, 48 (1995).

    Article  ADS  Google Scholar 

  3. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources: A Comprehensive Handbook (Springer, New York, 2013).

    Google Scholar 

  4. S. M. Pershin, in Large Russian Encyclopedy (Bol’sh. Ross. Entsikl., Moscow, 2011), Vol. 17, p. 451 [in Russian].

    Google Scholar 

  5. S. Pershin, V. Linkin, V. Makarov, I. Prochazka, and K. Hamal, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), OSA Tech. Digest 10, CFI1 (1999).

  6. S. Pershin, in Proceedings of the International Symposium on Aerospace Sensing, Proc. SPIE 2222, 392 (1994).

    Article  ADS  Google Scholar 

  7. S. M. Pershin, M. Ya. Grishin, V. A. Zavozin, V. N. Lednev, V. A. Lukyanchenko, and V. S. Makarov, Laser Phys. Lett. 17, 026003 (2020).

    Article  ADS  Google Scholar 

  8. S. M. Pershin, Sci. Hoje, No. 12, 71 (1999).

    Google Scholar 

  9. https://mars.nasa.gov/internal_resources/818/.

  10. J. Hecht, Opt. Photon. News 29, 26 (2018).

    Article  ADS  Google Scholar 

  11. X. Wang, Z. Duan, M. Brydegaard, S. Svanberg, and G. Zhao, Appl. Phys. B 124, 207 (2018).

    Article  ADS  Google Scholar 

  12. S. M. Kochubei, Organization of Pigments in Photosynthetic Membranes as the Basis for Energy Supply of Photosynthesis (Nauk. Dumka, Kiev, 1986) [in Russian].

  13. E. E. Jacobs and A. S. Holt, J. Chem. Phys. 22, 142 (1954).

    ADS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Ministry of Science and Higher Education of the Russian Federation for creation and development of global R&D centers, “Center of Photonics” (no.075-15-2020-912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Grishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, M.Y., Lednev, V.N., Pershin, S.M. et al. Ultracompact Fluorescence Lidar Based on a Diode Laser (405 nm, 150 mW) for Remote Sensing of Waterbodies and the Underlying Surface from Unmanned Aerial Vehicles. Dokl. Phys. 66, 153–155 (2021). https://doi.org/10.1134/S1028335821060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821060057

Keywords:

Navigation