Skip to main content
Log in

Experimental Validation of Linear-Stability Theory Applied to a Submerged Jet

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A submerged air jet of circular cross section of 0.12 m in diameter and a long laminar region (~5 jet diameters) is obtained experimentally at the Reynolds number of 5400. Within the linear analysis of stability, two branches of growing perturbations are found, which are generated by three inflection points on the experimental jet profiles. The frequency ranges of perturbations, as well as their growth rates and wavelengths are obtained. Experiments on introducing controlled perturbations into the jet with a long laminar portion are conducted. The characteristics of waves amplified in experiments due to the introduction of perturbations prove to be close to the predictions of the linear theory of stability. Thus, the applicability of the linear stability theory to the submerged jet is validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. B. Schubauer and H. K. Skramstad, J. Res. Nat. Bur. Stand. 38, 251 (1947).

    Article  Google Scholar 

  2. A. V. Boiko, K. J. A. Westin, B. G. B. Klingmann, V. V. Kozlov, and P. H. Alfredsson, J. Fluid Mech. 281, 219 (1994).

    Article  ADS  Google Scholar 

  3. M. Nishioka, S. Iida, and Y. Ichikawa, J. Fluid Mech. 72, 731 (1975).

    Article  ADS  Google Scholar 

  4. V. V. Kozlov and S. P. Ramazanov, Izv. SO AN SSSR, Ser.: Tekh. Nauk, No. 8 (2), 45 (1981).

    Google Scholar 

  5. W. Pfenniger, in Boundary Layer and Flow Control, Ed. by G. Lachman (Pergamon, Oxford, 1961), p. 970.

    Google Scholar 

  6. P. J. Morris, J. Fluid Mech. 77, 511 (1976).

    Article  ADS  Google Scholar 

  7. V. Shtern and F. Hussain, J. Fluid Mech. 480, 283 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. I. Mullyadzhanov and N. I. Yavorskii, Nauch.-Tekh. Vedom. SPbGPU, Fiz.-Mat. Nauki 11 (3), 108 (2018).

    Google Scholar 

  9. S. C. Crow and F. H. Champagne, J. Fluid Mech. 48, 547 (1971).

    Article  ADS  Google Scholar 

  10. J. Cohen and I. Wygnanski, J. Fluid Mech. 176, 191 (1987).

    Article  ADS  Google Scholar 

  11. R. A. Petersen and M. M. Samet, J. Fluid Mech. 194, 153 (1988).

    Article  ADS  Google Scholar 

  12. Yu. S. Zaiko, A. I. Reshmin, S. Kh. Teplovodskii, and A. D. Chicherina, Fluid Dyn. 53, 95 (2018).

    Article  ADS  Google Scholar 

  13. J. Zayko, S. Teplovodskii, A. Chicherina, V. Vedeneev, and A. Reshmin, Phys. Fluids 30, 043603 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-19-00404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Zayko.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayko, J.S., Gareev, L.R., Chicherina, A.D. et al. Experimental Validation of Linear-Stability Theory Applied to a Submerged Jet. Dokl. Phys. 66, 106–109 (2021). https://doi.org/10.1134/S1028335821040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821040054

Keywords:

Navigation