Skip to main content
Log in

A Novel Model of a Mode-Localized MEMS Accelerometer

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this work, a model of a microelectromechanical accelerometer with two movable beam elements located between two stationary electrodes is proposed. The action of inertia forces in the longitudinal direction leads to a change in the spectral properties of the system, which can be used as an output signal of the sensor. The dynamics of the system in the presence of weak electrostatic coupling between the sensitive elements is characterized by the phenomenon of modal localization, which is a significant change in the amplitude relationships for the forms of in-phase and antiphase oscillations with small changes in the measured component of the object’s acceleration vector. It has been shown that the sensitivity of the proposed sensor based on modal localization can be orders of magnitude higher than the sensitivity of systems based on measuring the shift of natural frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Ya. Raspopov, Micromechanical Devices (Mashinostroenie, Moscow, 2007) [in Russian].

    Google Scholar 

  2. Y. Hasani, Microsyst. Technol. 25, 1369 (2019).

    Google Scholar 

  3. F. Chen, Y. Zhao, J. Wang, H. Zou, M. Kraft, and X. Li, IEEE Sens. J. 18 (5), 1859 (2018).

    ADS  Google Scholar 

  4. Ya.V. Belyaev, A. A. Belogurov, A. N. Bocharov, D. V. Kostygov, I. V. Lemko, A. A. Mikhteeva, A. V. Yakimova, N. N. Nevirkovets, and N. M. Chernetskaya, in Proc. 25th St. Petersburg Int. Conf. on Integrated Navigation Systems (ICINS), St. Petersburg, May 28–30,2018 (St. Petersburg, 2018), pp. 1–7.

  5. S. A. Zotov, B. R. Simon, A. A. Trusov, and A. M. Shkel, IEEE Sens. J. 15 (9), 5045 (2015).

    ADS  Google Scholar 

  6. Sh. Wang, X. Wei, Yu. Zhao, Zh. Jiang, and Ya. Shen, Sens. Actuators, A 283, 151 (2018).

    Google Scholar 

  7. F.-T. Shi, S.-C. Fan, C. Li, and X.-B. Peng, Sensors 18, 2266 (2018).

    Google Scholar 

  8. C. Pierre and E. H. Dowell, J. Sound Vib. 144 (3), 549 (1987).

  9. Ch. Zhao, M. H. Montaseri, G. S. Wood, S. H. Pu, A. A. Seshia, and M. Kraft, Sens. Actuators, A 249, 93 (2016).

    Google Scholar 

  10. S. Ilyas and M. I. Younis, Int. J. Non-Linear Mech. 125, 103516 (2020).

    ADS  Google Scholar 

  11. L. I. Mandel’shtam, Lectures on Optics, Relativity Theory and Quantum Mechanics, Ed. by S. M. Rytov (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  12. L. Ya. Banakh, Decomposition Methods in the Study of Vibrations of Mechanical Systems (R&C Dynamics, Moscow, 2016) [in Russian]

    Google Scholar 

  13. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    ADS  Google Scholar 

  14. M. Pandit, C. Zhao, G. Sobreviela, X. Zou, and A. Seshia, J. Microelectromech. Syst. 28 (5), 782 (2019).

    Google Scholar 

  15. B. Peng, K.-M. Hu, L. Shao, H. Yan. L. Li, X. Wei, W.-M. Zhang, J. Microelectromech. Syst. 29 (1), 3 (2020).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-01-00537.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Morozov or I. A. Popov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, N.F., Indeitsev, D.A., Igumnova, V.S. et al. A Novel Model of a Mode-Localized MEMS Accelerometer. Dokl. Phys. 65, 371–375 (2020). https://doi.org/10.1134/S1028335820100031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335820100031

Keywords:

Navigation