Abstract
The stability of the vertical position of an inverted pendulum under the action of support vibration and the attraction basin of this position are considered. In addition to the classical Kapitsa problem for the harmonic vibration of a support, the polyharmonic and random vibration of the support are investigated. The condition of stability of the vertical position is determined, and the attraction basin of this stable position is investigated.
This is a preview of subscription content, access via your institution.


REFERENCES
- 1
A. Stephenson, Phil. Mag. 15, 233 (1908).
- 2
P. L. Kapitsa, Usp. Fiz. Nauk 44 (1), 7 (1951).
- 3
I. I. Blekhman, Vibration Mechanics (Nauka, Moscow, 1994) [in Russian].
- 4
I. I. Blekhman, Theory of Vibration Processes and Devices (ID Ruda i metally, St. Petersburg, 2013) [in Russian].
- 5
N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, Dokl. Phys. 63 (9), 380 (2018).
- 6
A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, Vestnik SPb Univ. Mathematics. Mechanics. Astronomy 51 (3), 296 (2018).
- 7
G. A. Leonov and M. M. Shumafov, Methods of Stabilization of Linear Controlled Systems (Izd. SPb. un-ta, St. Petersburg, 2005) [in Russian].
- 8
N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Vibrations (Nauka, Moscow, 1969) [in Russian].
- 9
V. S. Pugachev, Theory of Random Functions (Fizmatlit, Moscow, 1960) [in Russian].
- 10
B. V. Gnedenko, Course of Probability Theory (Fizmatlit, Moscow, 1961) [in Russian].
Author information
Affiliations
Corresponding authors
Additional information
Translated by V. Bukhanov
Rights and permissions
About this article
Cite this article
Morozov, N.F., Belyaev, A.K., Tovstik, P.E. et al. Attraction Basins in the Generalized Kapitsa Problem. Dokl. Phys. 64, 335–339 (2019). https://doi.org/10.1134/S1028335819080056
Received:
Published:
Issue Date: