Skip to main content
Log in

Carbon Nanotubes in Arrays: Competition of van-der-Waals and Elastic Forces

  • Published:
Doklady Physics Aims and scope Submit manuscript


The van-der-Waals interaction between carbon nanotubes leads to the formation of agglomerates of bundles and strands. In such a self-assemblage, identical nanotubes are assembled into arrays with a high degree of ordering forming a crystalline structure. However, the van-der-Waals forces also result in a strain of the cross-section normal to their axes instead of only in the mutual attraction of nanotubes. This work presents an analysis of the nanotube strain and crystal-lattice parameters depending on the nanotube sizes and crystal symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others


  1. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273 (5274), 483 (1996).

    Article  ADS  Google Scholar 

  2. R. R. Schlittler, S. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, and M. E. Welland, Science 292 (5519), 1136 (2001).

    Article  ADS  Google Scholar 

  3. J. Tang, L.-S. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. Iijima, Phys. Rev. Lett. 85 (9), 1887 (2000).

    Article  ADS  Google Scholar 

  4. S. M. Sharma, S. Karmakar, S. K. Sikka, P. V. Teredesai, A. K. Sood, A. Govindaraj, and S. N. R. Rao, Phys. Rev. B 63 (20), 205417 (2001).

    Article  ADS  Google Scholar 

  5. T. Tang, A. Jagota, C. -Y. Hui, and N. J. Glassmaker, J. Appl. Phys. 97 (7), 0743 (2005).

  6. L. Girifalco, M. Hodak, and R. Lee, Phys. Rev. B 62 (19), 13104 (2000).

    Article  ADS  Google Scholar 

  7. A. N. Volkov and L. V. Zhigilei, J. Phys. Chem. C 114 (12), 5513 (2010).

    Article  Google Scholar 

  8. C. H. Sun, L. C. Yin, F. Li, G. -Q. Lu, and H.-M. Cheng, Chem. Phys. Lett. 403 (35), 343 (2005).

    Article  ADS  Google Scholar 

  9. C.-H. Sun, G.-Q. Lu, and H.-M. Cheng, Phys. Rev. B 73 (19), 195414 (2006).

    Article  ADS  Google Scholar 

  10. J. Zhao, J.-W. Jiang, Y. Jia, W. Guo, and T. Rabczuk, Carbon 57, 108 (2013).

    Article  Google Scholar 

  11. T. Tang, A. Jagota, and C.-Y. Hui, J. Appl. Phys. 97 (7), 074304 (2005).

    Article  ADS  Google Scholar 

  12. J. Tersoff and R. S. Ruoff, Phys. Rev. Lett. 73 (5), 676 (1994).

    Article  ADS  Google Scholar 

  13. N. Silvestre, C. M. Wang, Y. Y. Zhang, and Y. Xiang, Composite Struct. 93 (7), 1683 (2011).

    Article  Google Scholar 

  14. R. Rafiee and R. M. Moghadam, Composites 56, 435 (2014),

    Article  Google Scholar 

  15. V. V. Smirnov, L. I. Manevitch, M. Strozzi, and F. Pellicano, Physica D: Nonlinear Phenomena 325, 113 (2016).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to V. V. Smirnov or L. I. Manevitch.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.V., Manevitch, L.I. Carbon Nanotubes in Arrays: Competition of van-der-Waals and Elastic Forces. Dokl. Phys. 64, 218–221 (2019).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: