Skip to main content
Log in

A New Type of Cracks Adding to Griffith−Irwin Cracks

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The distinctions in the description of the conditions of cracking of materials are revealed. For Griffith−Irwin cracks, fracture is determined by the magnitude of the stress-intensity factor at the crack tip; in the case of the new type of cracks, fracture occurs due to an increase in the stress concentrations up to singular concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Griffith, Trans. Roy. Soc. London, A 221, 163 (1920).

  2. G. Irwin, Fracture of Metals (ASM, Cleveland, 1948).

    Google Scholar 

  3. G. P. Cherepanov, Mechanics of Brittle Fracture (Nauka, M., 1974) [in Russian].

  4. N. F. Morozov, Mathematical Problems in the Theory of Cracks (Nauka, M., 1984) [in Russian].

  5. V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, Acta Mech. 229 (5), 2163 (2018).

    Article  MathSciNet  Google Scholar 

  6. V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, Acta Mech. 229 (10), (2018).

  7. V. A. Babeshko, O. V. Evdokimova, and O. M. O. Ba-beshko, Dokl. Phys. 63 (5), 203 (2018).

    Article  ADS  Google Scholar 

  8. V. Z. Parton and V. G. Boriskovskii, Dynamics of Brittle Fracture (Mashinostroenie, M., 1988) [in Russian].

  9. V. M. Aleksandrov, B. I. Smetanin, and B. V. Sobol’, Thin Stress Concentrators in Elastic Solids (Nauka, M., 1993) [in Russian].

  10. M. S. Kirugulige and H. V. Tippur, Exp. Mech. 46 (2), 269 (2006).

    Article  Google Scholar 

  11. R. Rangarajan, M. M. Chiaramonte, M. J. Hunsweck, Y. Shen, and A. J. Lew, Int. J. Numer. Meth. Eng. 102 (3/4), 632 (2015).

    Article  Google Scholar 

  12. Y. Huang and H. Gao, J. Appl. Mech. 69, 76 (2002).

    Article  ADS  Google Scholar 

  13. Y. A. Antipov and A. V. Smirnov, Math. Mech. Solids 18, 153 (2013).

    Article  MathSciNet  Google Scholar 

  14. R. Krueger, Appl. Mech. Rev. 57, 109 (2004).

    Article  ADS  Google Scholar 

  15. E. K. Oneida, M. C. H. van der Meulen, and A. R. Ingraffea, Eng. Fract. Mech. 140, 106 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Sections of this work were performed as a part of the implementation of the State Program of the Ministry of Education and Science for 2018 (project no. 9.8753.2017/8.9), Southern Science Center, Russian Academy of Sciences, for 2018 (state registration no. 01201354241 project no. 00-18-04), and the Presidium of the Russian Academy of Sciences (project nos. P-16 00-18-21 and P-52 00-18-29) and supported by the Russian Foundation for Basic Research (project nos. 19-41-230003, 19-41-230004, 19-48-230014, 17-08-00323, 18-08-00465, 18-01-00384, and 18-05-80008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Babeshko.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babeshko, V.A., Babeshko, O.M. & Evdokimova, O.V. A New Type of Cracks Adding to Griffith−Irwin Cracks. Dokl. Phys. 64, 102–105 (2019). https://doi.org/10.1134/S1028335819030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335819030042

Navigation