Skip to main content
Log in

Thermal Stability of Glass with Simulators of Chloride Highly Radioactive Wastes

  • TECHNICAL PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

High temperature behavior of sodium–aluminum fluorophosphate glass—a potential matrix for immobilisation of waste salt electrolyte from pyrochemical reprocessing of irradiated nuclear fuel (INF) has been studied. The glass crystallizes between 430 and 640°C with formation of phosphate phases, which dissolve above 640°C leading to homogenization of the glass. Similar transformations of the glass matrix due to heating from the decay of short-lived fission products may have a negative effect on properties of vitrified radioactive chloride wastes during storage in a repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Kopyrin, A. I. Karelin, and V. A. Karelin, Technology for the Production and Radiochemical Reprocessing of Nuclear Fuel (Atomenergoizdat, Moscow, 2006) [in Russian].

    Google Scholar 

  2. A. A. Lizin, S. V. Tomilin, O. E. Gnevashov, A. N. Lukinykh, and A. I. Orlova, Radiochemistry (Moscow, Russ. Fed.) 54 (6), 542 (2012).

  3. S. V. Tomilin, A. N. Lukinykh, and A. A. Lizin, At. Energ. 102 (3), 217 (2007).

  4. G. Leturcq, A. Grandjean, D. Rigaud, P. Perouty, and M. Charlot, J. Nucl. Mater. 347 (1), 1 (2005).

    Article  ADS  Google Scholar 

  5. M. A. Lewis, M. Hash, and D. Glandorf, Mater. Res. Soc. Symp. Proc. 465, 433 (1996).

    Article  Google Scholar 

  6. K. L. Nash, Ch. Madic, J. N. Mathur, and J. Lacquement, in Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstein, and J. Fuger (Springer, Dordrecht, 2010), Vol. 4, pp. 2622–2798.

    Google Scholar 

  7. V. V. Orlov, A. I. Filin, A. V. Lopatkin, A. G. Glazov, L. P. Sukhanov, V. I. Volk, P. P. Poluektov, O. A. Ustinov, M. T. Vorontsov, V. F. Leontiev, and R. S. Karimov, Prog. Nucl. Energy 47 (1), 171 (2005).

    Article  Google Scholar 

  8. Pyrochemical Separations in Nuclear Applications, A    Status Report. OECD NEA. https://www.-yumpu.com/en/document/view/22897217/pyrochemical-separations-in-nuclear-applications-a-status-report. Cited October 15, 2018.

  9. Yu. G. Lavrinovich, M. A. Kuzin, M. V. Kormilitsyn, S. V. Tomilin, E. Yu. Gribakin, and L. V. Zakharova, At. Energy 101 (6), 894 (2006).

    Article  Google Scholar 

  10. PDF-2. International Center for Diffraction Data. http://www.icdd.com/index.php/pdf-2/. Cited October 15, 2018.

  11. Phosphate Glasses with Radioactive Wastes, Ed. by A. A. Vashmana and A. S. Polyakova (TsNIIatominform, Moscow, 1997) [in Russian].

  12. E. R. Vance, J. Davis, K. Olufson, I. Chironi, I. Karatchevtseva, and I. Farnan, J. Nucl. Mater. 420 (1), 396 (2012).

    Article  ADS  Google Scholar 

  13. K. V. Martynov, A. N. Nekrasov, A. R. Kotelnikov, A. A. Shiryaev, S. V. Stefanovsky, Glass Phys. Chem. 44 (6), 591 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Shiryaev, A.A. Thermal Stability of Glass with Simulators of Chloride Highly Radioactive Wastes. Dokl. Phys. 63, 513–516 (2018). https://doi.org/10.1134/S1028335818120042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335818120042

Navigation