Skip to main content
Log in

The Mechanism of the Transition of Solid Hydrogen to the Conducting State at High Pressures

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The change in the structure of solid hydrogen upon compression along the isotherm of 100 K near the transition to the conducting state has been investigated within the density-functional theory. The dependences of pressure and electrical conductivity on the hydrogen density have been calculated. The pressure range from 602 to 836 GPa has been found where the first peak of the pair correlation function arises at a distance of 0.92 Å, which corresponds to the interatomic distance in the molecular \({\text{H}}_{3}^{ + }\) ion. Notably, this distance does not change with an increase in density. A sharp increase in the electrical conductivity is also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  2. V. A. Ginzburg, On Physics and Astrophysics. Papers and Reports, 2nd ed. (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  3. R. Dias and I. F. Silvera, Science 355, 715 (2017).

    Article  ADS  Google Scholar 

  4. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  5. E. G. Brovman, Yu. Kagan, and A. Kholas, Zh. Eksp. Teor. Fiz. 62, 1492 (1972).

    Google Scholar 

  6. E. G. Brovman, Yu. Kagan, A. Kholas, and V. V. Pushkarev, Pis’ma Zh. Eksp. Teor. Fiz. 18, 269 (1973).

    Google Scholar 

  7. Yu. Kagan, V. V. Pushkarev, and A. Kholas, Zh. Eksp. Teor. Fiz. 73, 967 (1977).

    ADS  Google Scholar 

  8. C. J. Pickard and R. J. Needs, Nature Phys. 3, 473 (2007).

    Article  ADS  Google Scholar 

  9. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 104 (7), 460 (2016).

    Article  ADS  Google Scholar 

  10. N. N. Degtyarenko, E. A. Mazur, and K. S. Grishakov, JETP Lett. 105 (10), 664 (2017).

    Article  ADS  Google Scholar 

  11. G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, J. Chem. Phys. 148, 102314 (2018).

    Article  ADS  Google Scholar 

  12. G. Kresse and J. Furthmüller, Phys. Rev. B 54 (16), 11169 (1996).

    Article  ADS  Google Scholar 

  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996).

    Article  ADS  Google Scholar 

  14. M. Cafiero and L. Adamowicz, Chem. Phys. Lett. 387, 136 (2004).

    Article  ADS  Google Scholar 

  15. G. E. Norman and I. M. Saitov, Dokl. Phys. 62 (6), 284 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Saitov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, G.E., Saitov, I.M. The Mechanism of the Transition of Solid Hydrogen to the Conducting State at High Pressures. Dokl. Phys. 63, 272–275 (2018). https://doi.org/10.1134/S102833581807011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102833581807011X

Keywords

Navigation