Doklady Physics

, Volume 63, Issue 5, pp 180–185 | Cite as

A Quantum Correction to the Momentum Distribution Function of Particles

  • Yu. N. Lazarev


On the basis of the solution to the equation for a single-particle density matrix, the momentum distribution is obtained for a light-particle impurity placed in an ordered system of heavy particles and interacting with them with the amplitude U0. The effect of the value of U0/T0 on the functional form of the momentum distribution is investigated. It is shown that the momentum-distribution function obtained within the perturbation theory up to the terms ~(U0/T0)2 retains its form also outside the region of applicability of the perturbation theory; however, the relative magnitude of the correction is much smaller than that given by the perturbation theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Wigner, G. E. Uhlenbeck, and L. Gropper, Phys. Rev. 40, 749 (1932).ADSCrossRefGoogle Scholar
  2. 2.
    V. M. Galitsky and V. V. Yakimets, Zh. Exp. Teor. Fiz. 51, 957 (1966).Google Scholar
  3. 3.
    A. N. Starostin, A. B. Mironov, N. L. Aleksandrov, et al., Physica A 305, 287 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Yeletsky, A. N. Starostin, and M. D. Taran, Usp. Fiz. Nauk 175, 299 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Coraddu, M. Lissia, G. Mezzorani, et al., Physica A 340, 490 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    M. Coraddu, G. Mezzorani, Yu.V. Petrushevich, et al., Physica A 340, 496 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    M. Coraddu, M. Lissia, and P. Quarati, Cent. Eur. J. Phys. 7 (3), 527 (2009).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1964) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.All-Russia Research Zababakhin Institute of Technical PhysicsSnezhinskRussia

Personalised recommendations